Journal Home > Volume 9 , Issue 11

Molecularly imprinted polymers (MIP) are receiving increasing attention thanks to their robustness, stability, and inexpensive manufacture compared with their bio-analogues such as antibodies. The molecular imprinting process can be defined as the generation of molecular recognition sites in a synthetic polymer. The template-derived sites created within a polymeric matrix allow MIPs (often referred as plastic antibodies) to selectively recognize and bind to the target molecule. Therefore, MIPs can be used in sensors and in separation and diagnostics. Owing to their size and functional properties, MIP nanoparticles (NPs) can potentially be used in biomedicine, but comprehensive analysis of their interaction with cells and in vitro toxicological tests must be performed first. Herein, we report the synthesis of bare and core–shell imprinted NPs using an innovative solid-phase approach and the toxicological evaluation of such NPs in different cell lines (HaCaT, MEFs, HT1080, and macrophages). We also evaluated the influence of the protein corona on particle stability, the internalization of NPs in cells, and the influence of various surface coatings. Studies on the metabolic effects of imprinted NPs on fibroblasts showed that bare MIPs do not alter cell metabolism, whereas some issues arise when specific particle coatings are used. Furthermore, in vitro cytokine release studies revealed that macrophages were not activated in the presence of the MIPs evaluated in this study. The results suggest that MIP NPs are biocompatible, paving the way for their in vivo application.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Biocompatibility and internalization of molecularly imprinted nanoparticles

Show Author's information Francesco Canfarotta1( )Alicia Waters2Robyn Sadler3Paul McGill3Antonio Guerreiro4Dmitri Papkovsky2Karsten Haupt5Sergey Piletsky4
MIP Diagnostics Ltd.University of Leicester, Fielding Johnson BuildingUniversity Road, LeicesterLE1 7RHUK
School of Biochemistry and Cell BiologyUniversity College Cork, College Road, CorkIreland
GSK,David Jack Centre for R&DPark RoadWare, HertfordshireSG12 0DPUK
Chemistry DepartmentUniversity of LeicesterLeicesterLE1 7RHUK
CNRS Enzyme and Cell Engineering LaboratoryCompiègne University of TechnologyRue Roger CouttolencCS 6031960203Compiègne Cedex, France

Abstract

Molecularly imprinted polymers (MIP) are receiving increasing attention thanks to their robustness, stability, and inexpensive manufacture compared with their bio-analogues such as antibodies. The molecular imprinting process can be defined as the generation of molecular recognition sites in a synthetic polymer. The template-derived sites created within a polymeric matrix allow MIPs (often referred as plastic antibodies) to selectively recognize and bind to the target molecule. Therefore, MIPs can be used in sensors and in separation and diagnostics. Owing to their size and functional properties, MIP nanoparticles (NPs) can potentially be used in biomedicine, but comprehensive analysis of their interaction with cells and in vitro toxicological tests must be performed first. Herein, we report the synthesis of bare and core–shell imprinted NPs using an innovative solid-phase approach and the toxicological evaluation of such NPs in different cell lines (HaCaT, MEFs, HT1080, and macrophages). We also evaluated the influence of the protein corona on particle stability, the internalization of NPs in cells, and the influence of various surface coatings. Studies on the metabolic effects of imprinted NPs on fibroblasts showed that bare MIPs do not alter cell metabolism, whereas some issues arise when specific particle coatings are used. Furthermore, in vitro cytokine release studies revealed that macrophages were not activated in the presence of the MIPs evaluated in this study. The results suggest that MIP NPs are biocompatible, paving the way for their in vivo application.

Keywords: core–shell, pegylation, toxicology, inflammatory response, particle uptake, metabolism

References(44)

1

Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012, 14, 282–295.

2

Galindo-Rodríguez, S. A.; Puel, F.; Briançon, S.; Allémann, E.; Doelker, E.; Fessi, H. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur. J. Pharm. Sci. 2005, 25, 357–367.

3

Canfarotta, F.; Whitcombe, M. J.; Piletsky, S. A. Polymeric nanoparticles for optical sensing. Biotechnol. Adv. 2013, 31, 1585–1599.

4

Ton, X. A.; Acha, V.; Haupt, K.; Tse Sum Bui, B. Direct fluorimetric sensing of UV-excited analytes in biological and environmental samples using molecularly imprinted polymer nanoparticles and fluorescence polarization. Biosens. Bioelectron. 2012, 36, 22–28.

5

Basozabal, I.; Guerreiro, A.; Gomez-Caballero, A.; Aranzazu Goicolea, M.; Barrio, R. J. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens. Bioelectron. 2014, 58, 138–144.

6

Chianella, I.; Guerreiro, A.; Moczko, E.; Caygill, J. S.; Piletska, E. V.; De Vargas Sansalvador, I. M. P.; Whitcombe, M. J.; Piletsky, S. A. Direct replacement of antibodies with molecularly imprinted polymer nanoparticles in ELISA—Development of a novel assay for vancomycin. Anal. Chem. 2013, 85, 8462–8468.

7

Korposh, S.; Chianella, I.; Guerreiro, A.; Caygill, S.; Piletsky, S.; James, S. W.; Tatam, R. P. Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles. Analyst 2014, 139, 2229–2236.

8

Liu, Y. B.; Wang, S. S.; Zhang, C.; Su, X.; Huang, S.; Zhao, M. P. Enhancing the selectivity of enzyme detection by using tailor-made nanoparticles. Anal. Chem. 2013, 85, 4853–4857.

9

Shutov, R. V.; Guerreiro, A.; Moczko, E.; De Vargas- Sansalvador, I. P.; Chianella, I.; Whitcombe, M. J.; Piletsky, S. A. Introducing MINA—The molecularly imprinted nanoparticle assay. Small 2014, 10, 1086–1089.

10

Hoshino, Y.; Koide, H.; Urakami, T.; Kanazawa, H.; Kodama, T.; Oku, N.; Shea, K. J. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: A plastic antibody. J. Am. Chem. Soc. 2010, 132, 6644–6645.

11

Poma, A.; Guerreiro, A.; Whitcombe, M. J.; Piletska, E. V.; Turner, A. P. F.; Piletsky, S. A. Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template–"Plastic Antibodies". Adv. Funct. Mater. 2013, 23, 2821–2827.

12

Moczko, E.; Poma, A.; Guerreiro, A.; Perez De Vargas Sansalvador, I.; Caygill, S.; Canfarotta, F.; Whitcombe, M. J.; Piletsky, S. Surface-modified multifunctional MIP nanoparticles. Nanoscale 2013, 5, 3733–3741.

13

Moczko, E.; Guerreiro, A.; Piletska, E.; Piletsky, S. PEGstabilized core-shell surface-imprinted nanoparticles. Langmuir 2013, 29, 9891–9896.

14

Rabanel, J. M.; Hildgen, P.; Banquy, X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J. Control. Release 2014, 185, 71–87.

15

Lai, J. C. K.; Ananthakrishnan, G.; Jandhyam, S.; Dukhande, V. V.; Bhushan, A.; Gokhale, M.; Daniels, C. K.; Leung, S. W. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins. Int. J. Nanomedicine 2010, 5, 715–723.

16

Aragonés, J.; Fraisl, P.; Baes, M.; Carmeliet, P. Oxygen sensors at the crossroad of metabolism. Cell Metab. 2009, 9, 11–22.

17

von Kleist-Retzow, J. C.; Hornig-Do, H. T.; Schauen, M.; Eckertz, S.; Dinh, T. A. D.; Stassen, F.; Lottmann, N.; Bust, M.; Galunska, B.; Wielckens, K. et al. Impaired mitochondrial Ca2+ homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels. Exp. Cell Res. 2007, 313, 3076–3089.

18

Hynes, J.; Floyd, S.; Soini, A. E.; O'Connor, R.; Papkovsky, D. B. Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J. Biomol. Screen. 2003, 8, 264–272.

19

Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solidphase synthesis of molecularly imprinted nanoparticles. Nat. Protoc. 2016, 11, 443–455.

20

Sheng, H.; Ye, B. C. Different strategies of covalent attachment of oligonucleotide probe onto glass beads and the hybridization properties. Appl. Biochem. Biotechnol. 2009, 152, 54–65.

21

Guerreiro, A. R.; Chianella, I.; Piletska, E.; Whitcombe, M. J.; Piletsky, S. A. Selection of imprinted nanoparticles by affinity chromatography. Biosens. Bioelectron. 2009, 24, 2740–2743.

22

Zhdanov, A. V.; Favre, C.; O'Flaherty, L.; Adam, J.; O'Connor, R.; Pollard, P. J.; Papkovsky, D. B. Comparative bioenergetic assessment of transformed cells using a cell energy budget platform. Integr. Biol. 2011, 3, 1135–1142.

23

Zhdanov, A. V.; Ogurtsov, V. I.; Taylor, C. T.; Papkovsky, D. B. Monitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique. Integr. Biol. 2010, 2, 443–451.

24

Poma, A.; Guerreiro, A.; Caygill, S.; Moczko, E.; Piletsky, S. Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water. RSC Adv. 2014, 4, 4203–4206.

25

Ambrosini, S.; Beyazit, S.; Haupt, K.; Tse Sum Bui, B. Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition. Chem. Commun. 2013, 49, 6746–6748.

26

Otsu, T. Iniferter concept and living radical polymerization. J. Polym. Sci. A: Polym. Chem. 2000, 38, 2121–2136.

27

Mun, E. A.; Hannell, C.; Rogers, S. E.; Hole, P.; Williams, A. C.; Khutoryanskiy, V. V. On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions. Langmuir 2014, 30, 308–317.

28

Carnell, P.; Newell, S. Characterizing nanoparticles in liquids: Protein aggregation studies. Am. Lab. 2013, 45, 48–51.

29

Anderson, W.; Kozak, D.; Coleman, V. A.; Jämting, Å. K.; Trau, M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J. Colloid Interface Sci. 2013, 405, 322–330.

30

Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009, 61, 428–437.

31

Cui, M. H.; Liu, R. X.; Deng, Z. Y.; Ge, G. L.; Liu, Y.; Xie, L. M. Quantitative study of protein coronas on gold nanoparticles with different surface modifications. Nano Res. 2014, 7, 345–352.

32

Walkey, C. D.; Chan, W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012, 41, 2780–2799.

33

Pellegrino, T.; Kudera, S.; Liedl, T.; Javier, A. M.; Manna, L.; Parak, W. J. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 2005, 1, 48–63.

34

Natte, K.; Friedrich, J. F.; Wohlrab, S.; Lutzki, J.; von Klitzing, R.; Österle, W.; Orts-Gil, G. Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona. Colloids Surf. B: Biointerfaces 2013, 104, 213–220.

35

Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21.

36

Göppert, T. M.; Müller, R. H. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm. 2005, 302, 172–186.

37

Vroman, L.; Adams, A. L.; Fischer, G. C.; Munoz, P. C. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 1980, 55, 156–159.

38

Dmitriev, R. I.; Zhdanov, A. V.; Jasionek, G.; Papkovsky, D. B. Assessment of cellular oxygen gradients with a panel of phosphorescent oxygen-sensitive probes. Anal. Chem. 2012, 84, 2930–2938.

39

Bernier, M.; Paul, R. K.; Martin-Montalvo, A.; Scheibye-Knudsen, M.; Song, S. M.; He, H. J.; Armour, S. M.; Hubbard, B. P.; Bohr, V. A.; Wang, L. L. et al. Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J. Biol. Chem. 2011, 286, 19270–19279.

40

Fercher, A.; Borisov, S. M.; Zhdanov, A. V.; Klimant, I.; Papkovsky, D. B. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS Nano 2011, 5, 5499–5508.

41

Murray, P. J.; Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737.

42

Sindrilaru, A.; Peters, T.; Wieschalka, S.; Baican, C.; Baican, A.; Peter, H.; Hainzl, A.; Schatz, S.; Qi, Y.; Schlecht, A. et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 2011, 121, 985–997.

43

Finco, D.; Grimaldi, C.; Fort, M.; Walker, M.; Kiessling, A.; Wolf, B.; Salcedo, T.; Faggioni, R.; Schneider, A.; Ibraghimov, A. et al. Cytokine release assays: Current practices and future directions. Cytokine 2014, 66, 143–155.

44

Vidal, J. M.; Kawabata, T. T.; Thorpe, R.; Silva-Lima, B.; Cederbrant, K.; Poole, S.; Mueller-Berghaus, J.; Pallardy, M.; Van der Laan, J. W. In vitro cytokine release assays for predicting cytokine release syndrome: The current stateof- the-science. Report of a European Medicines Agency Workshop. Cytokine 2010, 51, 213–215.

File
12274_2016_1222_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 April 2016
Revised: 13 July 2016
Accepted: 15 July 2016
Published: 13 September 2016
Issue date: November 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This research was supported by the Research Executive Agency (REA) of the European Union under Grant Agreement (No. PITNGA-2010-264772) (ITN CHEBANA). The authors also thank The Wellcome Trust (UK) for the granting of a Translational Award. The authors want to acknowledge Dave Hassall for his suggestions and Philippa Allen for her work on developing the macrophage assays and advice in interpreting the results. Images and analysis of the particle surface chemistry provided by CytoViva, Inc. Auburn, Al.

Return