Journal Home > Volume 9 , Issue 11

Although phase change memory technology has developed drastically in the past two decades, the cognition of the key switching materials still ignores an important member, the face-centered cubic Sb2Te3. Apart from the well-known equilibrium hexagonal Sb2Te3 crystal, we prove the metastable face-centered cubic Sb2Te3 phase does exist. Such a metastable crystal contains a large concentration of vacancies randomly occupying the cationic lattice sites. The face-centered cubic to hexagonal phase transformation of Sb2Te3, accompanied by vacancy aggregation, occurs at a quite lower temperature compared to that of Ge2Sb2Te5 alloy. We prove that the covalent-like bonds prevail in the metastable Sb2Te3 crystal, deviating from the ideal resonant features. If a proper doping technique is adopted, the metastable Sb2Te3 phase could be promising for realizing reversibly swift and low-energy phase change memory applications. Our study may offer a new insight into commercialized Ge–Sb–Te systems and help in the design of novel phase change materials to boost the performances of the phase change memory device.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct observation of metastable face-centered cubic Sb2Te3 crystal

Show Author's information Yonghui Zheng1,§Mengjiao Xia2,§Yan Cheng1( )Feng Rao1( )Keyuan Ding1Weili Liu1Yu Jia2Zhitang Song1( )Songlin Feng1
State Key Laboratory of Functional Materials for InformaticsShanghai Institute of Micro-system and Information TechnologyChinese Academy of SciencesShanghai200050China
International Laboratory of Quantum Functional Materials of HenanSchool of Physics and EngineeringZhengzhou UniversityZhengzhou450001China

§These authors contributed equally to this work.

Abstract

Although phase change memory technology has developed drastically in the past two decades, the cognition of the key switching materials still ignores an important member, the face-centered cubic Sb2Te3. Apart from the well-known equilibrium hexagonal Sb2Te3 crystal, we prove the metastable face-centered cubic Sb2Te3 phase does exist. Such a metastable crystal contains a large concentration of vacancies randomly occupying the cationic lattice sites. The face-centered cubic to hexagonal phase transformation of Sb2Te3, accompanied by vacancy aggregation, occurs at a quite lower temperature compared to that of Ge2Sb2Te5 alloy. We prove that the covalent-like bonds prevail in the metastable Sb2Te3 crystal, deviating from the ideal resonant features. If a proper doping technique is adopted, the metastable Sb2Te3 phase could be promising for realizing reversibly swift and low-energy phase change memory applications. Our study may offer a new insight into commercialized Ge–Sb–Te systems and help in the design of novel phase change materials to boost the performances of the phase change memory device.

Keywords: phase change memory, Sb2Te3, face-centered cubic, TEM, ab initio theoretical simulation

References(36)

1

Wong, H. -S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.

2

Choi, Y.; Song, I.; Park, M. H.; Chung, H.; Chang, S.; Cho, B.; Kim, J.; Oh, Y.; Kwon, D.; Sunwoo, J. et al. A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth. In Proceedings of the 2012 IEEE Solid-State Circuits Conference, San Francisco, CA, 2012, pp 46–48.

3

Villa, C.; Mills, D.; Barkley, G.; Giduturi, H.; Schippers, S.; Vimercati, D. A 45nm 1Gb 1.8V phase-change memory. In Proceedings of the 2010 IEEE Solid-State Circuits Conference, San Francisco, CA, 2010, pp 270−271.

4

Wuttig, M. Phase-change materials: Towards a universal memory? Nat. Mater. 2005, 4, 265–266.

5

Atwood, G. Phase-change materials for electronic memories. Science 2008, 321, 210–211.

6

Yamada, N.; Ohno, E.; Nishiuchi, K.; Akahira, N.; Takao, M. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 1991, 69, 2849–2856.

7

Friedrich, I.; Weidenhof, V.; Njoroge, W.; Franz, P.; Wuttig, M. Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J. Appl. Phys. 2000, 87, 4130–4134.

8

Cheng, H. Y.; Hsu, T. H.; Raoux, S.; Wu, J. Y.; Du, P. Y.; Breitwisch, M.; Zhu, Y.; Lai, E. K.; Joseph, E.; Mittal, S. et al. A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material. In Proceedings of the 2011 IEEE International Electron Devices Meeting, Washington, DC, 2011, pp 3.4.1–3.4.4.

9

Kolobov, A. V.; Fons, P.; Frenkel, A. I.; Ankudinov, A. L.; Tominaga, J.; Uruga, T. Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 2004, 3, 703–708.

10

Xu, M.; Cheng, Y. Q.; Sheng, H. W.; Ma. E. Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. Phys. Rev. Lett. 2009, 103, 195502.

11

Shportko, K.; Kremers, S.; Woda, M.; Lencer, D.; Robertson, J.; Wuttig, M. Resonant bonding in crystalline phase-change materials. Nat. Mater. 2008, 7, 653–658.

12

Lencer, D.; Salinga, M.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Wuttig, M. A map for phase-change materials. Nat. Mater. 2008, 7, 972–977.

13

Kolobov, A. V.; Fons, P.; Tominaga, J.; Hase, M. Excitationassisted disordering of GeTe and related solids with resonant bonding. J. Phys. Chem. C 2014, 118, 10248–10253.

14

Kolobov, A. V.; Fons, P.; Tominaga, J.; Frenkel, A. I.; Ankudinov, A. L.; Yannopoulos, S. N.; Andrikopoulos, K. S.; Uruga, T. Why phase-change media are fast and stable: A new approach to an old problem. Jpn. J. Appl. Phys. 2005, 44, 3345–3349.

15

Sun, Z. M.; Zhou, J.; Mao, H. K.; Ahuja, R. Peierls distortion mediated reversible phase transition in GeTe under pressure. Proc. Natl. Acad. Sci. USA 2012, 109, 5948–5952.

16

Kolobov, A. V.; Fons, P.; Tominaga, J.; Ovshinsky, S. R. Vacancy-mediated three-center four-electron bonds in GeTe-Sb2Te3 phase-change memory alloys. Phys. Rev. B 2013, 87, 165206.

17

Da Silva, J. L. F.; Walsh, A.; Lee, H. Insights into the structure of the stable and metastable (GeTe)m(Sb2Te3)n compounds. Phys. Rev. B 2008, 78, 224111.

18

Zhang, W.; Thiess, A.; Zalden, P.; Zeller, R.; Dederichs, P. H.; Raty, J. -Y.; Wuttig, M.; Blügel, S.; Mazzarello, R. Role of vacancies in metal–insulator transitions of crystalline phasechange materials. Nat. Mater. 2012, 11, 952–956.

19

Yin, Y.; Sone, H.; Hosaka, S. Characterization of nitrogendoped Sb2Te3 films and their application to phase-change memory. J. Appl. Phys. 2007, 102, 064503.

20

Zhu, M.; Xia, M. J.; Rao, F.; Li, X. B.; Wu, L. C.; Ji, X. L.; Lv, S. L.; Song, Z. T.; Feng, S. L.; Sun, H. B. et al. One order of magnitude faster phase change at reduced power in Ti-Sb-Te. Nat. Commun. 2014, 5, 4086.

21

Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed.; Springer: Berlin, 2009.

22

Waldecker, L.; Miller, T. A.; Rudé, M.; Bertoni, R.; Osmond, J.; Pruneri, V.; Simpson, R. E.; Ernstorfer, R.; Wall, S. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater. 2015, 14, 991–995.

23

Yu, J. L.; Liu, B.; Zhang, T.; Song, Z. T.; Feng, S. L.; Chen, B. Effects of Ge doping on the properties of Sb2Te3 phasechange thin films. Appl. Surf. Sci. 2007, 253, 6125–6129.

24

Spence, J. C. H. High-Resolution Electron Microscopy, 3rd ed.; Oxford University Press: New York, 2003.

25

Sun, Z. M.; Zhou, J.; Ahuja, R. Structure of phase change materials for data storage. Phys. Rev. Lett. 2006, 96, 055507.

26

Caravati, S.; Bernasconi, M.; Parrinello, M. First-principles study of liquid and amorphous Sb2Te3. Phys. Rev. B 2010, 81, 014201.

27

Kolobov, A. V.; Fons, P.; Tominaga, J. p-type conductivity of GeTe: The role of lone-pair electrons. Phys. Status Solidi B 2012, 249, 1902–1906.

28

Kastner, M.; Adler, D.; Fritzsche, H. Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 1976, 37, 1504–1507.

29

Sun, Z. M.; Zhou, J.; Blomqvist, A.; Johansson, B.; Ahuja, R. Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy. Phys. Rev. Lett. 2009, 102, 075504.

30

Rao, F.; Song, Z. T.; Ren, K.; Zhou, X. L.; Cheng, Y.; Wu, L. C.; Liu, B. Si–Sb–Te materials for phase change memory applications. Nanotechnology 2011, 22, 145702.

31

Zhou, X. L.; Xia, M. J.; Rao, F.; Wu, L. C.; Li, X. B.; Song, Z. T.; Feng, S. L.; Sun, H. B. Understanding phase-change behaviors of carbon-doped Ge2Sb2Te5 for phase-change memory application. ACS Appl. Mater. Interfaces 2014, 6, 14207–14214.

32

Kooi, B. J.; Groot, W. M. G.; De Hosson, J. Th. M. In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5. J. Appl. Phys. 2004, 95, 924–932.

33

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

34

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

35

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

36

Perdew, J. P.; Burke, K.; Ernzerhof, M.; Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–386.

File
12274_2016_1221_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 April 2016
Revised: 12 July 2016
Accepted: 15 July 2016
Published: 31 August 2016
Issue date: November 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDA09020402), National Integrate Circuit Research Program of China (No. 2009ZX02023-003), National Natural Science Foundation of China (Nos. 61076121, 61176122, 61106001, 61261160500, and 61376006), Science and Technology Council of Shanghai (Nos. 13ZR1447200 and 13DZ2295700). The supercomputer time was provided by the National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1 (A).

Return