Journal Home > Volume 9 , Issue 11

Very small superparamagnetic iron oxide nanoparticles (VSOPs) rapidly accumulate in atherosclerotic lesions, thereby enabling plaque visualization by magnetic resonance imaging (MRI). This study was performed to identify the uptake mechanisms of VSOPs into atherosclerotic plaques. Low-density lipoprotein receptor-deficient (LDLR-/-) mice with advanced atherosclerosis were analyzed using MRI and transmission electron microscopy (TEM) at various time points after intravenous administration of VSOPs. Post-mortem MRI detected VSOP labeling of atherosclerotic plaques 10 min after injection, and the signal increased over the first 3 h. TEM revealed that the intensive plaque labeling was mediated by accelerated transcytosis of VSOPs through endothelial cells overlaying atherosclerotic lesions. Experiments with endocytosis inhibitors and small interfering RNA (siRNA) revealed a dynamin-dependent mechanism involving both clathrin- and caveolin-mediated processes. In cell culture experiments, endothelial VSOP uptake was enhanced under proatherogenic flow and TNFα stimulation, conditions that are both present in plaque areas. Our study demonstrates that VSOPs enable non-invasive MRI assessment of accelerated endothelial transcytosis, an important pathomechanism in atherosclerotic plaque formation.


menu
Abstract
Full text
Outline
About this article

Uptake of citrate-coated iron oxide nanoparticles into atherosclerotic lesions in mice occurs via accelerated transcytosis through plaque endothelial cells

Show Author's information Wolfram C. Poller1,6,7( )Evelyn Ramberger1Philipp Boehm-Sturm2,3Susanne Mueller2,3Konstantin Möller1Norbert Löwa4Frank Wiekhorst4Susanne Wagner5Matthias Taupitz5Eyk Schellenberger5Gert Baumann1,6Karl Stangl1,6Verena Stangl1,6( )Antje Ludwig1,6
Medizinische Klinik mit Schwerpunkt Kardiologie und AngiologieCharité-Universitätsmedizin BerlinCampus MitteCharitéplatz 110117Berlin, Germany
Abteilung für Experimentelle NeurologieCenter for Stroke ResearchCharité-Universitätsmedizin BerlinCharitéplatz 110117Berlin, Germany
Charité Core Facility "7 T experimental MRIs"Charité-Universitätsmedizin BerlinCharitéplatz 110117Berlin, Germany
Physikalisch-Technische BundesanstaltAbbestr. 2-1210587Berlin, Germany
Institut für RadiologieCharité-Universitätsmedizin BerlinCampus MitteCharitéplatz 110117Berlin, Germany
DZHK (German Centre for Cardiovascular Research)partner site Berlin10115Berlin, Germany
Berlin Institute of Health (BIH)10117Berlin, Germany

Abstract

Very small superparamagnetic iron oxide nanoparticles (VSOPs) rapidly accumulate in atherosclerotic lesions, thereby enabling plaque visualization by magnetic resonance imaging (MRI). This study was performed to identify the uptake mechanisms of VSOPs into atherosclerotic plaques. Low-density lipoprotein receptor-deficient (LDLR-/-) mice with advanced atherosclerosis were analyzed using MRI and transmission electron microscopy (TEM) at various time points after intravenous administration of VSOPs. Post-mortem MRI detected VSOP labeling of atherosclerotic plaques 10 min after injection, and the signal increased over the first 3 h. TEM revealed that the intensive plaque labeling was mediated by accelerated transcytosis of VSOPs through endothelial cells overlaying atherosclerotic lesions. Experiments with endocytosis inhibitors and small interfering RNA (siRNA) revealed a dynamin-dependent mechanism involving both clathrin- and caveolin-mediated processes. In cell culture experiments, endothelial VSOP uptake was enhanced under proatherogenic flow and TNFα stimulation, conditions that are both present in plaque areas. Our study demonstrates that VSOPs enable non-invasive MRI assessment of accelerated endothelial transcytosis, an important pathomechanism in atherosclerotic plaque formation.

Keywords: magnetic resonance imaging, atherosclerosis, unstable plaques, decreased endothelial barrier function, superparamagnetic iron oxide nanoparticles

References(43)

1

Mozaffarian, D.; Benjamin, E. J.; Go, A. S.; Arnett, D. K.; Blaha, M. J.; Cushman, M.; de Ferranti, S.; Després, J. P.; Fullerton, H. J.; Howard, V. J. et al. Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation 2015, 131, e29–e322.

2

Davignon, J.; Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004, 109, Ⅲ27–Ⅲ32.

3

Libby, P.; Ridker, P. M.; Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317–325.

4

Bonetti, P. O.; Lerman, L. O.; Lerman, A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 168–175.

5

Fleg, J. L.; Stone, G. W.; Fayad, Z. A.; Granada, J. F.; Hatsukami, T. S.; Kolodgie, F. D.; Ohayon, J.; Pettigrew, R.; Sabatine, M. S.; Tearney, G. J. et al. Detection of high-risk atherosclerotic plaque: Report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc. Imaging 2012, 5, 941–955.

6

Nörenberg, D.; Ebersberger, H. U.; Diederichs, G.; Hamm, B.; Botnar, R. M.; Makowski, M. R. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease. Eur. Radiol. 2016, 26, 910–920.

7

Makowski, M. R.; Wiethoff, A. J.; Blume, U.; Cuello, F.; Warley, A.; Jansen, C. H. P.; Nagel, E.; Razavi, R.; Onthank, D. C.; Cesati, R. R. et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat. Med. 2011, 17, 383–388.

8

Chen, W.; Cormode, D. P.; Vengrenyuk, Y.; Herranz, B.; Feig, J. E.; Klink, A.; Mulder, W. J. M.; Fisher, E. A.; Fayad, Z. A. Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression. JACC Cardiovasc. Imaging 2013, 6, 373–384.

9

Makowski, M. R.; Forbes, S. C.; Blume, U.; Warley, A.; Jansen, C. H. P.; Schuster, A.; Wiethoff, A. J.; Botnar, R. M. In vivo assessment of intraplaque and endothelial fibrin in ApoE-/- mice by molecular MRI. Atherosclerosis 2012, 222, 43–49.

10

Phinikaridou, A.; Andia, M. E.; Protti, A.; Indermuehle, A.; Shah, A.; Smith, A.; Warley, A.; Botnar, R. M. Noninvasive magnetic resonance imaging evaluation of endothelial permeability in murine atherosclerosis using an albuminbinding contrast agent. Circulation 2012, 126, 707–719.

11

Ruehm, S. G.; Corot, C.; Vogt, P.; Kolb, S.; Debatin, J. F. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001, 103, 415–422.

12

Kooi, M. E.; Cappendijk, V. C.; Cleutjens, K. B. J. M.; Kessels, A. G. H.; Kitslaar, P. J. E. H. M.; Borgers, M.; Frederik, P. M.; Daemen, M. J. A. P.; van Engelshoven, J. M. A. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003, 107, 2453–2458.

13

Taupitz, M.; Wagner, S.; Schnorr, J.; Kravec, I.; Pilgrimm, H.; Bergmann-Fritsch, H.; Hamm, B. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest. Radiol. 2004, 39, 394–405.

14

Wagner, M.; Wagner, S.; Schnorr, J.; Schellenberger, E.; Kivelitz, D.; Krug, L.; Dewey, M.; Laule, M.; Hamm, B.; Taupitz, M. Coronary MR angiography using citrate-coated very small superparamagnetic iron oxide particles as bloodpool contrast agent: Initial experience in humans. J. Magn. Reson. Imaging 2011, 34, 816–823.

15

Ludwig, A.; Poller, W. C.; Westphal, K.; Minkwitz, S.; Lättig-Tünnemann, G.; Metzkow, S.; Stangl, K.; Baumann, G.; Taupitz, M.; Wagner, S. et al. Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans. Basic Res. Cardiol. 2013, 108, 328.

16

Makowski, M. R.; Varma, G.; Wiethoff, A. J.; Smith, A.; Mattock, K.; Jansen, C. H. P.; Warley, A.; Taupitz, M.; Schaeffter, T.; Botnar, R. M. Noninvasive assessment of atherosclerotic plaque progression in ApoE-/- mice using susceptibility gradient mapping. Circ. Cardiovasc. Imaging 2011, 4, 295–303.

17

Scharlach, C.; Kratz, H.; Wiekhorst, F.; Warmuth, C.; Schnorr, J.; Genter, G.; Ebert, M.; Mueller, S.; Schellenberger, E. Synthesis of acid-stabilized iron oxide nanoparticles and comparison for targeting atherosclerotic plaques: Evaluation by MRI, quantitative MPS, and TEM alternative to ambiguous Prussian blue iron staining. Nanomedicine 2015, 11, 1085–1095.

18

Wagner, S.; Schnorr, J.; Ludwig, A.; Stangl, V.; Ebert, M.; Hamm, B.; Taupitz, M. Contrast-enhanced MR imaging of atherosclerosis using citrate-coated superparamagnetic iron oxide nanoparticles: Calcifying microvesicles as imaging target for plaque characterization. Int. J. Nanomedicine 2013, 8, 767–779.

19

Makowski, M. R.; Henningsson, M.; Spuentrup, E.; Kim, W. Y.; Maintz, D.; Manning, W. J.; Botnar, R. M. Characterization of coronary atherosclerosis by magnetic resonance imaging. Circulation 2013, 128, 1244–1255.

20

Zimmerman, M.; McGeachie, J. Quantitation of the relationship between aortic endothelial intercellular cleft morphology and permeability to albumin. Atherosclerosis 1986, 59, 277–282.

21

Gerrity, R. G.; Richardson, M.; Somer, J. B.; Bell, F. P.; Schwartz, C. J. Endothelial cell morphology in areas of in vivo Evans blue uptake in the aorta of young pigs. Ⅱ. Ultrastructure of the intima in areas of differing permeability to proteins. Am. J. Pathol. 1977, 89, 313–334.

22

Sigovan, M.; Boussel, L.; Sulaiman, A.; Sappey-Marinier, D.; Alsaid, H.; Desbleds-Mansard, C.; Ibarrola, D.; Gamondes, D.; Corot, C.; Lancelot, E. et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: Initial experience in animal model. Radiology 2009, 252, 401–409.

23

Schekman, R.; Singer, S. J. Clustering and endocytosis of membrane receptors can be induced in mature erythrocytes of neonatal but not adult humans. Proc. Natl. Acad. Sci. USA 1976, 73, 4075–4079.

24

Moreno, P. R.; Purushothaman, K. R.; Sirol, M.; Levy, A. P.; Fuster, V. Neovascularization in human atherosclerosis. Circulation 2006, 113, 2245–2252.

25

Macia, E.; Ehrlich, M.; Massol, R.; Boucrot, E.; Brunner, C.; Kirchhausen, T. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 2006, 10, 839–850.

26

Lobatto, M. E.; Calcagno, C.; Millon, A.; Senders, M. L.; Fay, F.; Robson, P. M.; Ramachandran, S.; Binderup, T.; Paridaans, M. P. M.; Sensarn, S. et al. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS Nano 2015, 9, 1837–1847.

27

Vasile, E.; Simionescu, M.; Simionescu, N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J. Cell Biol. 1983, 96, 1677–1689.

28

Kühn, M. W. M.; Armstrong, S. A. Designed to kill: Novel menin-MLL inhibitors target MLL-rearranged leukemia. Cancer Cell 2015, 27, 431–433.

29

Zhou, J.; Li, Y. S.; Chien, S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2191–2198.

30

Kolárová, H.; Ambruzová, B.; SvihálkováŠindlerová, L.; Klinke, A.; Kubala, L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm. 2014, 2014, Article ID 694312.

31

Poller, W. C.; Löwa, N.; Wiekhorst, F.; Taupitz, M.; Wagner, S.; Möller, K.; Baumann, G.; Stangl, V.; Trahms, L.; Ludwig, A. Magnetic particle spectroscopy reveals dynamic changes in the magnetic behavior of very small superparamagnetic iron oxide nanoparticles during cellular uptake and enables determination of cell-labeling efficacy. J. Biomed. Nanotechnol. 2016, 12, 337–346.

32

Poon, G. M. K.; Gariépy, J. Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells. Biochem. Soc. Trans. 2007, 35, 788–793.

33

Zhang, S. Y.; Moustafa, Y.; Huo, Q. Different interaction modes of biomolecules with citrate-capped gold nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 21184–21192.

34

Bai, K.; Wang, W. Shear stress-induced redistribution of the glycocalyx on endothelial cells in vitro. Biomech. Model. Mechanobiol. 2014, 13, 303–311.

35

Zeng, Y.; Waters, M.; Andrews, A.; Honarmandi, P.; Ebong, E. E.; Rizzo, V.; Tarbell, J. M. Fluid shear stress induces the clustering of heparan sulfate via mobility of glypican-1 in lipid rafts. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H811–H820.

36

Cruz-Chu, E. R.; Malafeev, A.; Pajarskas, T.; Pivkin, I. V.; Koumoutsakos, P. Structure and response to flow of the glycocalyx layer. Biophys. J. 2014, 106, 232–243.

37

Samuel, S. P.; Jain, N.; O'Dowd, F.; Paul, T.; Kashanin, D.; Gerard, V. A.; Gun'ko, Y. K.; Prina-Mello, A.; Volkov, Y. Multifactorial determinants that govern nanoparticle uptake by human endothelial cells under flow. Int. J. Nanomedicine 2012, 7, 2943–2956.

38

Matuszak, J.; Zaloga, J.; Friedrich, R. P.; Lyer, S.; Nowak, J.; Odenbach, S.; Alexiou, C.; Cicha, I. Endothelial biocompatibility and accumulation of SPION under flow conditions. J. Magn. Magn. Mater. 2015, 380, 20–26.

39

Lin, A.; Sabnis, A.; Kona, S.; Nattama, S.; Patel, H.; Dong, J. F.; Nguyen, K. T. Shear-regulated uptake of nanoparticles by endothelial cells and development of endothelial-targeting nanoparticles. J. Biomed. Mater. Res. A 2010, 93, 833–842.

40

Howard, M.; Zern, B. J.; Anselmo, A. C.; Shuvaev, V. V.; Mitragotri, S.; Muzykantov, V. Vascular targeting of nanocarriers: Perplexing aspects of the seemingly straightforward paradigm. ACS Nano 2014, 8, 4100–4132.

41

Poller, W. C.; Bernard, R.; Derst, C.; Weiss, T.; Madai, V. I.; Veh, R. W. Lateral habenular neurons projecting to rewardprocessing monoaminergic nuclei express hyperpolarizationactivated cyclic nucleotid-gated cation channels. Neuroscience 2011, 193, 205–216.

42

Poller, W. C.; Madai, V. I.; Bernard, R.; Laube, G.; Veh, R. W. A glutamatergic projection from the lateral hypothalamus targets VTA-projecting neurons in the lateral habenula of the rat. Brain Res. 2013, 1507, 45–60.

43

Stangl, V.; Günther, C.; Jarrin, A.; Bramlage, P.; Moobed, M.; Staudt, A.; Baumann, G.; Stangl, K.; Felix, S. B. Homocysteine inhibits TNF-a-induced endothelial adhesion molecule expression and monocyte adhesion via nuclear factor-κB dependent pathway. Biochem. Biophys. Res. Commun. 2001, 280, 1093–1100.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 March 2016
Revised: 15 July 2016
Accepted: 17 July 2016
Published: 14 October 2016
Issue date: November 2016

Copyright

© Tsinghua University Press and Springer-Verlag BerlinHeidelberg 2016

Acknowledgements

Acknowledgements

The project was supported by the Deutsche Forschungsgemeinschaft (DFG) within the Clinical Research Unit KFO 213 (Nos. STA 481/1-2, LU 1559/1-2, TA 166/7-2, and WA 3105/1-2) and the Bundesministerium für Bildung und Forschung (BMBF) (No. DZHK B15-028). Additional funding was provided by the DFG (EXC Neurocure) and the BMBF (01EO0801, Center for Stroke Research Berlin) and 01EW1201 under the ERA-NET-NEURON scheme funded by the European Commission (PBS). We highly appreciate the excellent technical assistance of A. Stach, S. Metzkow, and M. Andratzek. ES provided the molecular model of VSOP in the graphical abstract. WCP is participant in the BIH-Charité Clinical Scientist Program funded by the Charité-Universitätsmedizin Berlin and the Berlin Institute of Health.

Return