Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Li metal is considered one of the most promising candidates for the anode material in high-energy-density Li-ion batteries. However, the dendritic growth of Li metal during the plating/stripping process can severely reduce Coulombic efficiency and cause safety problems, which is a key issue limiting the application of Li metal anodes. Herein, we present a novel strategy for dendrite-free deposition of Li by modifying the Cu current collector with a three-dimensional carbon nanofiber (CNF) network. Owing to the large surface area and high conductivity of the CNF network, Li metal is inserted into and deposited onto the CNF directly, and no dendritic Li metal is observed, leaving a flat Li metal surface. With Li metal as the counter electrode for Li deposition, an average Coulombic efficiency of 99.9% was achieved for more than 300 cycles, at large current densities of 1.0 and 2.0 mA·cm-2, and with a high Li loading of 1 mAh·cm-2. The scalability of the preparation method and the impressive results achieved here demonstrate the potential for the application of our design to the future development of dendrite-free Li metal anodes.
Shen, C. F.; Ge, M. Y.; Zhang, A. Y.; Fang, X.; Liu, Y. H.; Rong, J. P.; Zhou, C. W. Silicon(lithiated)-sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density. Nano Energy 2016, 19, 68-77.
Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.
Chen, S. Q.; Sun, B.; Xie, X. Q.; Mondal, A. K.; Huang, X. D.; Wang, G. X. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life. Nano Energy 2015, 16, 268-280.
Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193-2203.
Wang, J. J.; Li, Y. L.; Sun, X. L. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2013, 2, 443-467.
Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem., Int. Ed. 2005, 44, 4391-4395.
Liang, S. Q.; Hu, Y.; Nie, Z. W.; Huang, H.; Chen, T.; Pan, A. Q.; Cao, G. Z. Template-free synthesis of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries. Nano Energy 2015, 13, 58-66.
Rao, B. M. L.; Francis, R. W.; Christopher, H. A. Lithium-aluminum electrode. J. Electrochem. Soc. 1977, 124, 1490-1492.
Kanamura, K.; Tamura, H; Shiraishi, S; Takehara, Z. Morphology and chemical compositions of surface films of lithium deposited on a Ni substrate in nonaqueous electrolytes. J. Electroanal. Chem. 1995, 394, 49-62.
Aurbach, D.; Zinigrad, E.; Teller, H.; Dan, P. Factors which limit the cycle life of rechargeable lithium (metal) batteries. J. Electrochem. Soc. 2000, 147, 1274-1279.
Kominato, A.; Yasukawa, E.; Sato, N.; Ijuuin, T.; Asahina, H.; Mori, S. Analysis of surface films on lithium in various organic electrolytes. J. Power Sources 1997, 68, 471-475.
Brissot, C.; Rosso, M.; Chazalviel, J. -N.; Lascaud, S. Dendritic growth mechanisms in lithium-polymer cells. J. Power Sources 1999, 81-82, 925-929.
Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 2014, 13, 69-73.
Steiger, J.; Kramer, D.; Mönig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 2014, 261, 112-119.
Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J. Phys. Chem. B 2000, 104, 12282-12291.
Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405-416.
Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.
Qian, J. F.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Henderson, W. A.; Zhang, Y. H.; Zhang, J. -G. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 2015, 15, 135-144.
Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618-623.
Yan, K.; Lee, H. W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016-6022.
Luo, W.; Zhou, L. H.; Fu, K.; Yang, Z.; Wan, J. Y.; Manno, M.; Yao, Y. G.; Zhu, H. L.; Yang, B.; Hu, L. B. A thermally conductive separator for stable Li metal anodes. Nano Lett. 2015, 15, 6149-6154.
Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888-2895.
Ji, X. L.; Liu, D. -Y.; Prendiville, D. G.; Zhang, Y. C.; Liu, X. N.; Stucky, G. D. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 2012, 7, 10-20.
Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.
Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P. C.; Chu, S.; Cui, Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015, 15, 2910-2916.
Cheng, X. -B.; Peng, H. -J.; Huang, J. -Q.; Zhang, R.; Zhao, C. -Z.; Zhang, Q. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries. ACS Nano 2015, 9, 6373-6382.
Ji, L. W.; Zhang, X. W. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 2009, 20, 155705.
Ji, L. W.; Yao, Y. F.; Toprakci, O.; Lin, Z.; Liang, Y. Z.; Shi, Q.; Medford, A. J.; Millns, C. R.; Zhang, X. W. Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J. Power Sources 2010, 195, 2050-2056.
Cheng, X. -B.; Zhang, R.; Zhao, C. -Z.; Wei, F.; Zhang, J. -G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.
Leroy, S.; Martinez, H.; Dedryvère, R.; Lemordant, D.; Gonbeau, D. Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study. Appl. Surf. Sci. 2007, 253, 4895-4905.
Xiong, S. Z.; Xie, K.; Diao, Y.; Hong, X. B. Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries. J. of Power Sources 2014, 246, 840-845.
Nie, M. Y.; Lucht, B. L. Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries. J. Electrochem. Soc. 2014, 161, A1001-A1006.
Kundu, S.; Wang, Y. M.; Xia, W.; Muhler, M. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: A quantitative high-resolution XPS and TPD/TPR study. J. Phys. Chem. C 2008, 112, 16869-16878.
Fong, R.; Von Sacken, U.; Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 1990, 137, 2009-2013.
Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E. Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 1987, 134, 1611-1620.
Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Zaban, A.; Luski, S.; Carmeli, Y.; Yamin, H. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries Ⅱ. Graphite electrodes. J. Electrochem. Soc. 1995, 142, 2882-2889.
Miao, R. R.; Yang, J.; Feng, X. J.; Jia, H.; Wang, J. L.; Nuli, Y. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 2014, 271, 291-297.
Guo, J.; Wen, Z. Y.; Wu, M. F.; Jin, J.; Liu, Y. Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 2015, 51, 59-63.
Xiong, S. Z.; Xie, K.; Diao, Y.; Hong, X. B. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries. Electrochim. Acta 2012, 83, 78-86.