Journal Home > Volume 9 , Issue 11

Hydrogen production from steam or autothermal alcohol reforming has been widely studied, but these methods require high temperatures and emit CO2. Here, we present a new strategy for the simultaneous room-temperature production of hydrogen and other chemicals without the emission of CO2, via the photoelectrochemical reforming of biomass-derived alcohols. The measured hydrogen quantum efficiencies reach around 80% across the entire visible solar spectrum from 450 to 850 nm, achieving an ultrahigh hydrogen production rate of 7.91 μmol/(min·cm2) under AM 1.5G illumination.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Sustainable hydrogen and chemical production via photo-electrochemical reforming of biomass-derived alcohols

Show Author's information Liping Zhang1,2,§Rong Chen1,§Jianqiang Luo1Jianwei Miao1Jiajian Gao1Bin Liu1,2( )
School of Chemical and Biomedical EngineeringNanyang Technological University, 62 Nanyang DriveSingapore637459Singapore
Energy Research Institute@NTUInterdisciplinary Graduate School, Nanyang Technological UniversitySingapore637141Singapore

§ These authors contributed equally to this work.

Abstract

Hydrogen production from steam or autothermal alcohol reforming has been widely studied, but these methods require high temperatures and emit CO2. Here, we present a new strategy for the simultaneous room-temperature production of hydrogen and other chemicals without the emission of CO2, via the photoelectrochemical reforming of biomass-derived alcohols. The measured hydrogen quantum efficiencies reach around 80% across the entire visible solar spectrum from 450 to 850 nm, achieving an ultrahigh hydrogen production rate of 7.91 μmol/(min·cm2) under AM 1.5G illumination.

Keywords: Hydrogen, photo-electrochemical reforming, biomass-derived alcohols, alcohol oxidation

References(24)

1

Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sust. Energ. Rev. 2012, 16, 3024-3033.

2

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972-974.

3

Mansilla, C.; Avril, S.; Imbach, J.; Le Duigou, A. CO2-free hydrogen as a substitute to fossil fuels: What are the targets? Prospective assessment of the hydrogen market attractiveness. Int. J. Hydrogen Energy 2012, 37, 9451-9458.

4

Soares, R. R.; Simonetti, D. A.; Dumesic, J. A. Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angew. Chem., Int. Ed. 2006, 118, 4086-4089.

5

Navarro, R. M.; Peña, M. A.; Fierro, J. L. G. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass. Chem. Rev. 2007, 107, 3952-3991.

6

Dauenhauer, P. J.; Salge, J. R.; Schmidt, L. D. Renewable hydrogen by autothermal steam reforming of volatile carbohydrates. J. Catal. 2006, 244, 238-247.

7

Iulianelli, A.; Basile, A. Hydrogen production from ethanol via inorganic membrane reactors technology: A review. Catal. Sci. Technol. 2011, 1, 366-379.

8

Rollin, J. A.; del Campo, J. M.; Myung, S.; Sun, F. F.; You, C.; Bakovic, A.; Castro, R.; Chandrayan, S. K.; Wu, C. -H.; Adams, M. W. et al. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling. Proc. Natl. Acad. Sci. USA 2015, 112, 4964-4969.

9

Deluga, G. A.; Salge, J. R.; Schmidt, L. D.; Verykios, X. E. Renewable hydrogen from ethanol by autothermal reforming. Science 2004, 303, 993-997.

10

Huber, G. W.; Shabaker, J. W.; Dumesic, J. A. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 2003, 300, 2075-2077.

11

de la Piscina, P. R.; Homs, N. Use of biofuels to produce hydrogen (reformation processes). Chem. Soc. Rev. 2008, 37, 2459-2467.

12

Mattos, L. V.; Jacobs, G.; Davis, B. H.; Noronha, F. B. Production of hydrogen from ethanol: Review of reaction mechanism and catalyst deactivation. Chem. Rev. 2012, 112, 4094-4123.

13

Ni, M.; Leung, D. Y. C.; Leung, M. K. H. A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy 2007, 32, 3238-3247.

14

Lens, P.; Westermann, P.; Haberbauer, M.; Moreno, A. Biofuels for Fuel Cells: Renewable Energy from Biomass Fermentation; IWA Publishing: London, UK, 2005.

15

Vane, L. M. A review of pervaporation for product recovery from biomass fermentation processes. J. Chem. Technol. Biotechnol. 2005, 80, 603-629.

16

Hou, T. F.; Zhang, S. Y.; Chen, Y. D.; Wang, D. Z.; Cai, W. J. Hydrogen production from ethanol reforming: Catalysts and reaction mechanism. Renew. Sust. Energ. Rev. 2015, 44, 132-148.

17

Goldemberg, J. Ethanol for a sustainable energy future. Science 2007, 315, 808-810.

18

Lin, Y.; Tanaka, S. Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627-642.

19

Chen, Y. X.; Lavacchi, A.; Miller, H. A.; Bevilacqua, M.; Filippi, J.; Innocenti, M.; Marchionni, A.; Oberhauser, W.; Wang, L.; Vizza, F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 2014, 5, 4036.

20

Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183-4206.

21

Zhang, N.; Yang, M. -Q.; Liu, S. Q.; Sun, Y. G.; Xu, Y. -J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 2015, 115, 10307-10377.

22

Chen, J. Z.; Zhang, L. P.; Lam, Z. H.; Tao, H. B.; Zeng, Z. P.; Yang, H. B.; Luo, J. Q.; Ma, L.; Li, B.; Zheng, J. F. et al. Tunneling interlayer for efficient transport of charges in metal oxide electrodes. J. Am. Chem. Soc. 2016, 138, 3183-3189.

23

Zhang, L. P.; Cui, P.; Yang, H. B.; Xiao, F. -X.; Chen, J. Z.; Guo, Y. Y.; Liu, Y.; Zhang, W. N.; Huo, F. W.; Liu, B. Metal-organic frameworks as promising photosensitizers for photoelectrochemical water splitting. Adv. Sci. 2016, 3, 1500243.

24

Cha, H. G.; Choi, K. -S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 2015, 7, 328-333.

Video
12274_2016_1216_MOESM2_ESM.mp4
12274_2016_1216_MOESM3_ESM.mp4
File
12274_2016_1216_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 June 2016
Revised: 13 July 2016
Accepted: 13 July 2016
Published: 25 August 2016
Issue date: November 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the Nanyang Technological University Startup grant: M4080977.120, the Singapore Ministry of Education Academic Research Fund (AcRF) Tier 1: M4011021.120.

Return