AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Understanding bottom-up continuous hydrothermal synthesis of nanoparticles using empirical measurement and computational simulation

José Sierra-Pallares1Thomas Huddle2Juan García-Serna3Esther Alonso3Fidel Mato3Igor Shvets4Olaf Luebben4María José Cocero3Edward Lester2( )
Fluids Engineering Group Energy and Fluid Mechanics Engineering DepartmentUniversity of ValladolidPaseo del Cauce 5947010Valladolid, Spain
Advanced Materials Research Group the University of Nottingham, University ParkNottinghamNG7 2RDUK
High Pressure Processes Group, Department of Chemical Engineering and Environmental TechnologyUniversity of ValladolidC/Prado de la Magdalena s/n47011Valladolid, Spain
School of PhysicsTrinity College Dublin, College green, Dublin 2Ireland
Show Author Information

Graphical Abstract

Abstract

Continuous hydrothermal synthesis was highlighted in a recent review as an enabling technology for the production of nanoparticles. In recent years, it has been shown to be a suitable reaction medium for the synthesis of a wide range of nanomaterials. Many single and complex nanomaterials such as metals, metal oxides, doped oxides, carbonates, sulfides, hydroxides, phosphates, and metal organic frameworks can be formed using continuous hydrothermal synthesis techniques. This work presents a methodology to characterize continuous hydrothermal flow systems both experimentally and numerically, and to determine the scalability of a counter current supercritical water reactor for the large scale production (> 1, 000 T·year–1) of nanomaterials. Experiments were performed using a purpose-built continuous flow rig, featuring an injection loop on a metal salt feed line, which allowed the injection of a chromophoric tracer. At the system outlet, the tracer was detected using UV/Vis absorption, which could be used to measure the residence time distribution within the reactor volume. Computational fluid dynamics (CFD) calculations were also conducted using a modeled geometry to represent the experimental apparatus. The performance of the CFD model was tested against experimental data, verifying that the CFD model accurately predicted the nucleation and growth of the nanomaterials inside the reactor.

Electronic Supplementary Material

Download File(s)
12274_2016_1215_MOESM1_ESM.pdf (2.2 MB)

References

1

Hobson, D. W. Commercialization of nanotechnology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009, 1, 189-202.

2

Seo, Y. H.; Jeong, S.; Jo, Y.; Choi, Y.; Ryu, B. H.; Han, G.; Lee, M. Long-term dispersion stability and adhesion promotion of aqueous Cu nano-ink for flexible printed electronics. J. Nanosci. Nanotechnol. 2013, 13, 5661-5664.

3

Syamchand, S. S.; Sony, G. Europium enabled luminescent nanoparticles for biomedical applications. J. Lumin. 2015, 165, 190-215.

4

Uludag, Y.; Köktürk, G. Determination of prostate-specific antigen in serum samples using gold nanoparticle based amplification and lab-on-a-chip based amperometric detection. Microchim. Acta 2015, 182, 1685-1691.

5

Middlemas, S.; Fang, Z. Z.; Fan, P. Life cycle assessment comparison of emerging and traditional titanium dioxide manufacturing processes. J. Clean. Prod. 2015, 89, 137-147.

6

Zhang, Y.; Zhang, L. Y.; Zhou, C. W. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329-2339.

7

Sebastian, V.; Arruebo, M.; Santamaria, J. Reaction engineering strategies for the production of inorganic nanomaterials. Small 2014, 10, 835-853.

8

Byrappa, K.; Adschiri, T. Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Ch. 2007, 53, 117-166.

9

Adschiri, T.; Kanazawa, K.; Arai, K. Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water. J. Am. Ceram. Soc. 1992, 75, 1019-1022.

10

Lester, E.; Blood, P.; Denyer, J.; Giddings, D.; Azzopardi, B.; Poliakoff, M. Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles. J. Supercrit. Fluids. 2006, 37, 209-214.

11

Adschiri, T.; Hakuta, Y.; Sue, K.; Arai, K. Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. J. Nanopart. Res. 2001, 3, 227-235.

12

Aoki, N.; Sato, A.; Sasaki, H.; Litwinowicz, A. A.; Seong, G.; Aida, T.; Hojo, D.; Takami, S.; Adschiri, T. Kinetics study to identify reaction-controlled conditions for supercritical hydrothermal nanoparticle synthesis with flow-type reactors. J. Supercrit. Fluids. 2016, 110, 161-166.

13

Byrappa, K.; Ohara, S.; Adschiri, T. Nanoparticles synthesis using supercritical fluid technology—Towards biomedical applications. Adv. Drug Deliv. Rev. 2008, 60, 299-327.

14

Aksomaityte, G.; Poliakoff, M.; Lester, E. The production and formulation of silver nanoparticles using continuous hydrothermal synthesis. Chem. Eng. Sci. 2013, 85, 2-10.

15

Nugroho, A.; Yoon, D.; Chung, K. Y.; Kim, J. Synthesis of Li4Ti5O12/carbon nanocomposites in supercritical methanol for anode in Li-ion batteries: Effect of surface modifiers. J. Supercrit. Fluids. 2015, 101, 72-80.

16

Dunne, P. W.; Munn, A. S.; Starkey, C. L.; Lester, E. H. The sequential continuous-flow hydrothermal synthesis of molybdenum disulphide. Chem. Commun. 2015, 51, 4048-4050.

17

Dunne, P. W.; Starkey, C. L.; Gimeno-Fabra, M.; Lester, E. H. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials. Nanoscale 2014, 6, 2406-2418.

18

Adschiri, T.; Takami, S.; Arita, T.; Hojo, D.; Minami, K.; Aoki, N.; Togashi, T. Supercritical hydrothermal synthesis. In Handbook of Advanced Ceramics, 2nd ed.; Somiya, S., Ed.; Academic Press: Oxford, 2013; pp 949-978.

19

Wang, Q.; Tang, S. V. T.; Lester, E.; O'Hare, D. Synthesis of ultrafine layered double hydroxide (LDHs) nanoplates using a continuous-flow hydrothermal reactor. Nanoscale 2013, 5, 114-117.

20

Chaudhry, A. A.; Haque, S.; Kellici, S.; Boldrin, P.; Rehman, I.; Khalid, F. A.; Darr, J. A. Instant nano-hydroxyapatite: A continuous and rapid hydrothermal synthesis. Chem. Commun. 2006, 2286-2288.

21

Giroire, B.; Marre, S.; Garcia, A.; Cardinal, T.; Aymonier, C. Continuous supercritical route for quantum-confined GaN nanoparticles. React. Chem. Eng. 2016, 1, 151-155.

22

Gimeno-Fabra, M.; Munn, A. S.; Stevens, L. A.; Drage, T. C.; Grant, D. M.; Kashtiban, R. J.; Sloan, J.; Lester, E.; Walton, R. I. Instant MOFs: Continuous synthesis of metal-organic frameworks by rapid solvent mixing. Chem. Commun. 2012, 48, 10642-10644.

23

Nugroho, A.; Veriansyah, B.; Kim, S. K.; Lee, B. G.; Kim, J.; Lee, Y. W. Continuous synthesis of surface-modified nanoparticles in supercritical methanol: A facile approach to control dispersibility. Chem. Eng. J. 2012, 193-194, 146-153.

24

Munn, A. S.; Dunne, P. W.; Tang, S. V. Y.; Lester, E. H. Large-scale continuous hydrothermal production and activation of ZIF-8. Chem. Commun. 2015, 51, 12811-12814.

25

Seong, G.; Adschiri, T. The reductive supercritical hydrothermal process, a novel synthesis method for cobalt nanoparticles: Synthesis and investigation on the reaction mechanism. Dalton Trans. 2014, 43, 10778-10786.

26

Arita, T.; Hitaka, H.; Minami, K.; Naka, T.; Adschiri, T. Synthesis of iron nanoparticle: Challenge to determine the limit of hydrogen reduction in supercritical water. J. Supercrit. Fluids. 2011, 57, 183-189.

27

Seong, G.; Takami, ; Arita, T.; Minami, K.; Hojo, D.; Yavari, A. R.; Adschiri, T. Supercritical hydrothermal synthesis of metallic cobalt nanoparticles and its thermodynamic analysis. J. Supercrit. Fluids. 2011, 60, 113-120.

28

Blood, P. J.; Denyer, J. P.; Azzopardi, B. J.; Poliakoff, M.; Lester, E. A versatile flow visualisation technique for quantifying mixing in a binary system: Application to continuous supercritical water hydrothermal synthesis (SWHS). Chem. Eng. Sci. 2004, 59, 2853-2861.

29

Sugioka, K.; Ozawa, K.; Kubo, M.; Tsukada, T.; Takami, S.; Adschiri, T.; Sugimoto, K.; Takenaka, N.; Saito, Y. Relationship between size distribution of synthesized nanoparticles and flow and thermal fields in a flow-type reactor for supercritical hydrothermal synthesis. J. Supercrit. Fluids. 2016, 109, 43-50.

30

Dimotakis, P. E. Turbulent mixing. Annu. Rev. Fluid Mech. 2005, 37, 329-356.

31

Becker, J.; Hald, P.; Bremholm, M.; Pedersen, J. S.; Chevallier, J.; Iversen, S. B.; Iversen, B. B. Critical size of crystalline ZrO2 nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol. ACS Nano 2008, 2, 1058-1068.

32

Cabañas, A.; Darr, J. A.; Lester, E.; Poliakoff, M. Continuous hydrothermal synthesis of inorganic materials in a near-critical water flow reactor; the one-step synthesis of nano-particulate Ce1xZrxO2 (x = 0-1) solid solutions. J. Mater. Chem. 2001, 11, 561-568.

33

Lim, J. M.; Swami, A.; Gilson, L. M.; Chopra, S.; Choi, S.; Wu, J.; Langer, R.; Karnik, R.; Farokhzad, O. C. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano 2014, 8, 6056-6065.

34

Lester, E.; Blood, P. J.; Denyer, J. P.; Azzopardi, B. J.; Li, J.; Poliakoff, M. Impact of reactor geometry on continuous hydrothermal synthesis mixing. Mater. Res. Innov. 2010, 14, 19-26.

35

Sierra-Pallares, J.; Alonso, E.; Montequi, I.; Cocero, M. J. Particle diameter prediction in supercritical nanoparticle synthesis using three-dimensional CFD simulations. Validation for anatase titanium dioxide production. Chem. Eng. Sci. 2009, 64, 3051-3059.

36

Levenspiel, O. Tracer Technology: Modeling the Flow of Fluids; Springer: New York, 2012.

37

Sierra-Pallares, J.; Marchisio, D. L.; Alonso, E.; Parra-Santos, M. T.; Castro, F.; Cocero, M. J. Quantification of mixing efficiency in turbulent supercritical water hydrothermal reactors. Chem. Eng. Sci. 2011, 66, 1576-1589.

38

Cabanas, A.; Darr, J. A.; Lester, E.; Poliakoff, M. A continuous and clean one-step synthesis of nano-particulate Ce1-xZrxO2 solid solutions in near-critical water. Chem. Commun. 2000, 901-902.

39

Fogler, H. S. Essentials of Chemical Reaction Engineering; Pearson Education: Boston, 2010.

40

Aizawa, T.; Masuda, Y.; Minami, K.; Kanakubo, M.; Nanjo, H.; Smith, R. L. Direct observation of channel-tee mixing of high-temperature and high-pressure water. J. Supercrit. Fluids. 2007, 43, 222-227.

41

Liu, Y.; Fox, R. O. CFD predictions for chemical processing in a confined impinging-jets reactor. AIChE J. 2006, 52, 731-744.

42

Danckwerts, P. V. The definition and measurement of some characteristics of mixtures. Appl. Sci. Res. A 1952, 3, 279-296.

Nano Research
Pages 3377-3387
Cite this article:
Sierra-Pallares J, Huddle T, García-Serna J, et al. Understanding bottom-up continuous hydrothermal synthesis of nanoparticles using empirical measurement and computational simulation. Nano Research, 2016, 9(11): 3377-3387. https://doi.org/10.1007/s12274-016-1215-6

736

Views

30

Crossref

N/A

Web of Science

30

Scopus

2

CSCD

Altmetrics

Received: 07 June 2016
Revised: 11 July 2016
Accepted: 13 July 2016
Published: 25 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return