Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Heteroatom-doped nanocarbons have excellent potential for use in the oxygen reduction reaction (ORR). However, construction of three-dimensional (3D) N-doped carbon materials with good electrocatalytic performance remains a challenge. Herein, a poly(p-phenylenevinylene) (PPV)-precursor adhesion route was developed for construction of 3D N-doped reduced graphene oxide-PPV calcined-carbon nanotubes (N-RGO-PPV(c)-CNTs). In the synthesis, the PPV-precursor plays the role of a "glue" for strong adhesion of the RGO and CNTs. At high temperature, PPV can undergo transformation from the glassy state to a viscous state. Thus, the N-RGO-PPV(c)-CNT composite with multi-porous structure and ridge-like folded graphene flakes could be formed during nitridation at high temperature, which was favorable for production of more active sites for the ORR. As an ORR catalyst, the N-RGO-PPV(c)-CNT composites exhibited superior catalytic activity in alkaline electrolyte. The obtained onset potential (Eonset) of 0.92 V and catalytic current density of 5.7 mA·cm–2 at 0.6 V (vs. RHE) are comparable to those of the 20% Pt/C composite (0.98 V and 5.2 mA·cm–2). The electron transfer number for the N-RGO-PPV(c)-CNT catalyst was about 3.99, which is close to that of the 20% Pt/C (4.01) catalyst. Notably, the optimal N-RGO-PPV(c)-CNT catalyst shows better durability and methanol tolerance than commercial 20% Pt/C. The good performance of the N-RGO-PPV(c)-CNT catalyst for the ORR may be attributed to the synergistic effects of the unique 3D structure for effective mass-transfer, the effective N-doping for production of more active sites, and the good contact between the RGO and CNTs for easy charge-transfer.
Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345-352.
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394-4403.
Bing, Y. H.; Liu, H. S.; Zhang, L.; Ghosh, D.; Zhang, J. J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184-2202.
Yin, H. J.; Tang, H. J.; Wang, D.; Gao, Y.; Tang, Z. Y. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 2012, 6, 8288-8297.
Zhao, S. L.; Yin, H. J.; Du, L.; Yin, G. P.; Tang, Z. Y.; Liu, S. Q. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 3719-3724.
Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519-1527.
Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848-1857.
Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526-8544.
Yang, H. C.; Hu, F.; Zhang, Y. J.; Shi, L. Y.; Wang, Q. B. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts. Nano Res. 2016, 9, 207-213.
Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519-3542.
Zhao, L.; Wang, L.; Yu, P.; Zhao, D. D.; Tian, C. G.; Feng, H.; Ma, J.; Fu, H. G. A chromium nitride/carbon nitride containing graphitic carbon nanocapsule hybrid as a Pt-free electrocatalyst for oxygen reduction. Chem. Commun. 2015, 51, 12399-12402.
Wang, L.; Yin, J.; Zhao, L.; Tian, C. G.; Yu, P.; Wang, J. Q.; Fu, H. G. Ion-exchanged route synthesis of Fe2N-N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chem. Commun. 2013, 49, 3022-3024.
Tang, H. J.; Yin, H. J.; Wang, J. Y.; Yang, N. L.; Wang, D.; Tang, Z. Y. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 5585-5589.
He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741-3745.
Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660-12668.
Zheng, Y.; Jiao, Y.; Jaroniec, M.; Jin, Y. G.; Qiao, S. Z. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small 2012, 8, 3550-3566.
Yang, Z.; Nie, H. G.; Chen, X. A.; Chen, X. H.; Huang, S. M. Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J. Power Sources 2013, 236, 238-249.
Ai, W.; Luo, Z. M.; Jiang, J.; Zhu, J. H.; Du, Z. Z.; Fan, Z. X.; Xie, L. H.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 2014, 26, 6186-6192.
Wang, D. W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576-591.
Zhu, J. L.; He, C. Y.; Li, Y. Y.; Kang S.; Shen, P. K. One-step synthesis of boron and nitrogen-dual-self-doped graphene sheets as non-metal catalysts for oxygen reduction reaction. J. Mater. Chem. A 2013, 1, 14700-14705.
Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321-1326.
Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350-4358.
Yang, Z.; Yao, Z.; Li, G. F.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.; Chen, X. A.; Huang, S. M. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205-211.
Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhao, D. D.; Zhou, W.; Yin, J.; Wang, R. H.; Fu, H. G. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Sci. Rep. 2014, 4, 5184.
McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646-2687.
Li, Y. W.; Zhang, S. H.; Yu, J. B.; Wang, Q.; Sun, Q.; Jena, P. A new C=C embedded porphyrin sheet with superior oxygen reduction performance. Nano Res. 2015, 8, 2901-2912.
Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2016, 9, 329-343.
Li, Y.; Zhao, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 2012, 134, 15-18.
Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of "active sites": Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956-5961.
Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179-8183.
Liang, H. W.; Wu, Z. Y.; Chen, L. F.; Li, C.; Yu, S. H. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 2015, 11, 366-376.
Wu, Z. Y.; Liang, H. W.; Li, C.; Hu, B. C.; Xu, X. X.; Wang, Q.; Chen, J. F.; Yu, S. H. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 2014, 7, 1861-1872.
Trogadas, P.; Fuller, T. F.; Strasser, P. Carbon as catalyst and support for electrochemical energy conversion. Carbon 2014, 75, 5-42.
Lee, J. S.; Jo, K.; Lee, T.; Yun, T.; Cho, J.; Kim, B. S. Facile synthesis of hybrid graphene and carbon nanotubes as a metal-free electrocatalyst with active dual interfaces for efficient oxygen reduction reaction. J. Mater. Chem. A 2013, 1, 9603-9607.
Tian, J. Q.; Ning, R.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: Solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 1011-1017.
Tao, G. J.; Zhang, L. X.; Chen, L. S.; Cui, X. Z.; Hua, Z. L.; Wang, M.; Wang, J. C.; Chen, Y.; Shi, J. L. N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon 2015, 86, 108-117.
Chen, P.; Xiao, T. Y.; Qian, Y. H.; Li, S. S.; Yu, S. H. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater. 2013, 25, 3192-3196.
Wang, K. X.; Zhang, J. N.; Xia, W.; Zou, R. Q.; Guo, J. H.; Gao, Z. M.; Yan, W. F.; Guo, S. J.; Xu, Q. A dual templating route to three-dimensionally ordered mesoporous carbon nanonetworks: Tuning the mesopore type for electrochemical performance optimization. J. Mater. Chem. A 2015, 3, 18867-18873.
Zhao, S. L.; Li, Y. C.; Yin, H. J.; Liu, Z. Z.; Luan, E. X.; Zhao, F.; Tang, Z. Y.; Liu, S. Q. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci. Adv. 2015, 1, e1500372.
Qin, Y.; Li, J.; Yuan, J.; Kong, Y.; Tao, Y. X.; Lin, F. R.; Li, S. Hollow mesoporous carbon nitride nanosphere/three-dimensional graphene composite as high efficient electrocatalyst for oxygen reduction reaction. J. Power Sources 2014, 272, 696-702.
Tang, H. J.; Wang, J. Y.; Yin, H. J.; Zhao, H. J.; Wang, D.; Tang, Z. Y. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 2015, 27, 1117-1123.
Yin, H. J.; Zhao, S. L.; Wan, J. W.; Tang, H. J.; Chang, L.; He, L. C.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv. Mater. 2013, 25, 6270-6276.
Zhang, M.; Yuan, W. J.; Yao, B. W.; Li, C.; Shi, G. Q. Solution-processed PEDOT: PSS/graphene composites as the electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 3587-3593.
Wang, S. Y.; Yu, D. S.; Dai, L. M.; Chang, D. W.; Baek, J. B. Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 2011, 5, 6202-6209.
Liu, H. Y.; Zhang, G. Q.; Zhou, Y. F.; Gao, M. M.; Yang, F. L. One-step potentiodynamic synthesis of poly(1, 5-diaminoanthraquinone)/reduced graphene oxide nanohybrid with improved electrocatalytic activity. J. Mater. Chem. A 2013, 1, 13902-13913.
Lin, Z. Y.; Wallera, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2013, 2, 241-248.
Li, R.; Wei, Z. D.; Gou, X. L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 2015, 5, 4133-4142.
Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936-7942.
Du, X. H.; Chen, Z. L.; Li, Z. B.; Hao, H. X.; Zeng, Q. S.; Dong, C. W.; Yang, B. Dip-coated gold nanoparticle electrodes for aqueous solution-processed large-area solar cells. Adv. Energy Mater. 2014, 4, 1400135.
Wang, L.; Wang, H. Y.; Wei, H. T.; Zhang, H.; Chen, Q. D.; Xu, H. L.; Han, W.; Yang, B.; Sun, H. B. Unraveling charge separation and transport mechanisms in aqueous-processed polymer/CdTe nanocrystal hybrid solar cells. Adv. Energy Mater. 2014, 4, 1301882.
Chen, Z. L.; Zhang, H.; Du, X. H.; Cheng, X.; Chen, X. G.; Jiang, Y. Y.; Yang, B. From planar-heterojunction to n-i structure: An efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energy Environ. Sci. 2013, 6, 1597-1603.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228-240.
Rosca, I. D.; Watari, F.; Uo, M.; Akasaka, T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 2005, 43, 3124-3131.
Wei, H. T.; Zhang, H.; Jin, G.; Na, T. Y.; Zhang, G. Y.; Zhang, X.; Wang, Y.; Sun, H. Z.; Tian W. J.; Yang, B. Coordinatable and high charge-carrier-mobility water-soluble conjugated copolymers for effective aqueous-processed polymer-nanocrystal hybrid solar cells and OFET applications. Adv. Funct. Mater. 2013, 23, 4035-4042.
Liu, F. Y.; Chen, Z. L.; Du, X. H.; Zeng, Q. S.; Ji, T. J.; Cheng, Z. K.; Jin, G.; Yang, B. High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%. J. Mater. Chem. A 2016, 4, 1105-1111.