AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An effective poly(p-phenylenevinylene) polymer adhesion route toward three-dimensional nitrogen-doped carbon nanotube/reduced graphene oxide composite for direct electrocatalytic oxygen reduction

Yu Fu1Chungui Tian2Fangyuan Liu1Lei Wang2Haijing Yan2Bai Yang1( )
State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin UniversityChangchun130012China
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of ChinaHeilongjiang UniversityHarbin150080China
Show Author Information

Graphical Abstract

Abstract

Heteroatom-doped nanocarbons have excellent potential for use in the oxygen reduction reaction (ORR). However, construction of three-dimensional (3D) N-doped carbon materials with good electrocatalytic performance remains a challenge. Herein, a poly(p-phenylenevinylene) (PPV)-precursor adhesion route was developed for construction of 3D N-doped reduced graphene oxide-PPV calcined-carbon nanotubes (N-RGO-PPV(c)-CNTs). In the synthesis, the PPV-precursor plays the role of a "glue" for strong adhesion of the RGO and CNTs. At high temperature, PPV can undergo transformation from the glassy state to a viscous state. Thus, the N-RGO-PPV(c)-CNT composite with multi-porous structure and ridge-like folded graphene flakes could be formed during nitridation at high temperature, which was favorable for production of more active sites for the ORR. As an ORR catalyst, the N-RGO-PPV(c)-CNT composites exhibited superior catalytic activity in alkaline electrolyte. The obtained onset potential (Eonset) of 0.92 V and catalytic current density of 5.7 mA·cm–2 at 0.6 V (vs. RHE) are comparable to those of the 20% Pt/C composite (0.98 V and 5.2 mA·cm–2). The electron transfer number for the N-RGO-PPV(c)-CNT catalyst was about 3.99, which is close to that of the 20% Pt/C (4.01) catalyst. Notably, the optimal N-RGO-PPV(c)-CNT catalyst shows better durability and methanol tolerance than commercial 20% Pt/C. The good performance of the N-RGO-PPV(c)-CNT catalyst for the ORR may be attributed to the synergistic effects of the unique 3D structure for effective mass-transfer, the effective N-doping for production of more active sites, and the good contact between the RGO and CNTs for easy charge-transfer.

Electronic Supplementary Material

Download File(s)
12274_2016_1214_MOESM1_ESM.pdf (1.9 MB)

References

1

Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345-352.

2

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394-4403.

3

Bing, Y. H.; Liu, H. S.; Zhang, L.; Ghosh, D.; Zhang, J. J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184-2202.

4

Yin, H. J.; Tang, H. J.; Wang, D.; Gao, Y.; Tang, Z. Y. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 2012, 6, 8288-8297.

5

Zhao, S. L.; Yin, H. J.; Du, L.; Yin, G. P.; Tang, Z. Y.; Liu, S. Q. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 3719-3724.

6

Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519-1527.

7

Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848-1857.

8

Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526-8544.

9

Yang, H. C.; Hu, F.; Zhang, Y. J.; Shi, L. Y.; Wang, Q. B. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts. Nano Res. 2016, 9, 207-213.

10

Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519-3542.

11

Zhao, L.; Wang, L.; Yu, P.; Zhao, D. D.; Tian, C. G.; Feng, H.; Ma, J.; Fu, H. G. A chromium nitride/carbon nitride containing graphitic carbon nanocapsule hybrid as a Pt-free electrocatalyst for oxygen reduction. Chem. Commun. 2015, 51, 12399-12402.

12

Wang, L.; Yin, J.; Zhao, L.; Tian, C. G.; Yu, P.; Wang, J. Q.; Fu, H. G. Ion-exchanged route synthesis of Fe2N-N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chem. Commun. 2013, 49, 3022-3024.

13

Tang, H. J.; Yin, H. J.; Wang, J. Y.; Yang, N. L.; Wang, D.; Tang, Z. Y. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 5585-5589.

14

He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741-3745.

15

Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660-12668.

16

Zheng, Y.; Jiao, Y.; Jaroniec, M.; Jin, Y. G.; Qiao, S. Z. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small 2012, 8, 3550-3566.

17

Yang, Z.; Nie, H. G.; Chen, X. A.; Chen, X. H.; Huang, S. M. Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J. Power Sources 2013, 236, 238-249.

18

Ai, W.; Luo, Z. M.; Jiang, J.; Zhu, J. H.; Du, Z. Z.; Fan, Z. X.; Xie, L. H.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 2014, 26, 6186-6192.

19

Wang, D. W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576-591.

20

Zhu, J. L.; He, C. Y.; Li, Y. Y.; Kang S.; Shen, P. K. One-step synthesis of boron and nitrogen-dual-self-doped graphene sheets as non-metal catalysts for oxygen reduction reaction. J. Mater. Chem. A 2013, 1, 14700-14705.

21

Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321-1326.

22

Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350-4358.

23

Yang, Z.; Yao, Z.; Li, G. F.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.; Chen, X. A.; Huang, S. M. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205-211.

24

Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhao, D. D.; Zhou, W.; Yin, J.; Wang, R. H.; Fu, H. G. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Sci. Rep. 2014, 4, 5184.

25

McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646-2687.

26

Li, Y. W.; Zhang, S. H.; Yu, J. B.; Wang, Q.; Sun, Q.; Jena, P. A new C=C embedded porphyrin sheet with superior oxygen reduction performance. Nano Res. 2015, 8, 2901-2912.

27

Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2016, 9, 329-343.

28

Li, Y.; Zhao, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 2012, 134, 15-18.

29

Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of "active sites": Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956-5961.

30

Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179-8183.

31

Liang, H. W.; Wu, Z. Y.; Chen, L. F.; Li, C.; Yu, S. H. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 2015, 11, 366-376.

32

Wu, Z. Y.; Liang, H. W.; Li, C.; Hu, B. C.; Xu, X. X.; Wang, Q.; Chen, J. F.; Yu, S. H. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 2014, 7, 1861-1872.

33

Trogadas, P.; Fuller, T. F.; Strasser, P. Carbon as catalyst and support for electrochemical energy conversion. Carbon 2014, 75, 5-42.

34

Lee, J. S.; Jo, K.; Lee, T.; Yun, T.; Cho, J.; Kim, B. S. Facile synthesis of hybrid graphene and carbon nanotubes as a metal-free electrocatalyst with active dual interfaces for efficient oxygen reduction reaction. J. Mater. Chem. A 2013, 1, 9603-9607.

35

Tian, J. Q.; Ning, R.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: Solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 1011-1017.

36

Tao, G. J.; Zhang, L. X.; Chen, L. S.; Cui, X. Z.; Hua, Z. L.; Wang, M.; Wang, J. C.; Chen, Y.; Shi, J. L. N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon 2015, 86, 108-117.

37

Chen, P.; Xiao, T. Y.; Qian, Y. H.; Li, S. S.; Yu, S. H. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater. 2013, 25, 3192-3196.

38

Wang, K. X.; Zhang, J. N.; Xia, W.; Zou, R. Q.; Guo, J. H.; Gao, Z. M.; Yan, W. F.; Guo, S. J.; Xu, Q. A dual templating route to three-dimensionally ordered mesoporous carbon nanonetworks: Tuning the mesopore type for electrochemical performance optimization. J. Mater. Chem. A 2015, 3, 18867-18873.

39

Zhao, S. L.; Li, Y. C.; Yin, H. J.; Liu, Z. Z.; Luan, E. X.; Zhao, F.; Tang, Z. Y.; Liu, S. Q. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci. Adv. 2015, 1, e1500372.

40

Qin, Y.; Li, J.; Yuan, J.; Kong, Y.; Tao, Y. X.; Lin, F. R.; Li, S. Hollow mesoporous carbon nitride nanosphere/three-dimensional graphene composite as high efficient electrocatalyst for oxygen reduction reaction. J. Power Sources 2014, 272, 696-702.

41

Tang, H. J.; Wang, J. Y.; Yin, H. J.; Zhao, H. J.; Wang, D.; Tang, Z. Y. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 2015, 27, 1117-1123.

42

Yin, H. J.; Zhao, S. L.; Wan, J. W.; Tang, H. J.; Chang, L.; He, L. C.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv. Mater. 2013, 25, 6270-6276.

43

Zhang, M.; Yuan, W. J.; Yao, B. W.; Li, C.; Shi, G. Q. Solution-processed PEDOT: PSS/graphene composites as the electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 3587-3593.

44

Wang, S. Y.; Yu, D. S.; Dai, L. M.; Chang, D. W.; Baek, J. B. Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 2011, 5, 6202-6209.

45

Liu, H. Y.; Zhang, G. Q.; Zhou, Y. F.; Gao, M. M.; Yang, F. L. One-step potentiodynamic synthesis of poly(1, 5-diaminoanthraquinone)/reduced graphene oxide nanohybrid with improved electrocatalytic activity. J. Mater. Chem. A 2013, 1, 13902-13913.

46

Lin, Z. Y.; Wallera, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2013, 2, 241-248.

47

Li, R.; Wei, Z. D.; Gou, X. L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 2015, 5, 4133-4142.

48

Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936-7942.

49

Du, X. H.; Chen, Z. L.; Li, Z. B.; Hao, H. X.; Zeng, Q. S.; Dong, C. W.; Yang, B. Dip-coated gold nanoparticle electrodes for aqueous solution-processed large-area solar cells. Adv. Energy Mater. 2014, 4, 1400135.

50

Wang, L.; Wang, H. Y.; Wei, H. T.; Zhang, H.; Chen, Q. D.; Xu, H. L.; Han, W.; Yang, B.; Sun, H. B. Unraveling charge separation and transport mechanisms in aqueous-processed polymer/CdTe nanocrystal hybrid solar cells. Adv. Energy Mater. 2014, 4, 1301882.

51

Chen, Z. L.; Zhang, H.; Du, X. H.; Cheng, X.; Chen, X. G.; Jiang, Y. Y.; Yang, B. From planar-heterojunction to n-i structure: An efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energy Environ. Sci. 2013, 6, 1597-1603.

52

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

53

Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228-240.

54

Rosca, I. D.; Watari, F.; Uo, M.; Akasaka, T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 2005, 43, 3124-3131.

55

Wei, H. T.; Zhang, H.; Jin, G.; Na, T. Y.; Zhang, G. Y.; Zhang, X.; Wang, Y.; Sun, H. Z.; Tian W. J.; Yang, B. Coordinatable and high charge-carrier-mobility water-soluble conjugated copolymers for effective aqueous-processed polymer-nanocrystal hybrid solar cells and OFET applications. Adv. Funct. Mater. 2013, 23, 4035-4042.

56

Liu, F. Y.; Chen, Z. L.; Du, X. H.; Zeng, Q. S.; Ji, T. J.; Cheng, Z. K.; Jin, G.; Yang, B. High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%. J. Mater. Chem. A 2016, 4, 1105-1111.

Nano Research
Pages 3364-3376
Cite this article:
Fu Y, Tian C, Liu F, et al. An effective poly(p-phenylenevinylene) polymer adhesion route toward three-dimensional nitrogen-doped carbon nanotube/reduced graphene oxide composite for direct electrocatalytic oxygen reduction. Nano Research, 2016, 9(11): 3364-3376. https://doi.org/10.1007/s12274-016-1214-7

705

Views

19

Crossref

N/A

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 25 May 2016
Revised: 10 July 2016
Accepted: 13 July 2016
Published: 30 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return