Journal Home > Volume 9 , Issue 11

Developing efficient water-splitting electrocatalysts, particularly for the anodic oxygen evolution reaction (OER), is an important challenge in energy conversion technologies. In this study, we report the development of iron-doped nickel disulfide nanoarray on Ti mesh (Fe0.1-NiS2 NA/Ti) via the sulfidation of its nickel–iron-layered double hydroxide precursor (NiFe-LDH NA/Ti). As a three-dimensional OER anode, Fe0.1-NiS2 NA/Ti exhibits remarkable activity and stability in 1.0 M KOH, with the requirement of a low overpotential of 231 mV to achieve 100 mA·cm?2. In addition, it exhibits excellent activity and durability in 30 wt.% KOH. Notably, this electrode is also efficient for the cathodic hydrogen evolution reaction under alkaline conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting

Show Author's information Na Yang1Chun Tang1Kunyang Wang2Gu Du2Abdullah M. Asiri3Xuping Sun1( )
College of ChemistrySichuan UniversityChengdu610064China
Chengdu Institute of Geology and Mineral ResourcesChengdu610081China
Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia

Abstract

Developing efficient water-splitting electrocatalysts, particularly for the anodic oxygen evolution reaction (OER), is an important challenge in energy conversion technologies. In this study, we report the development of iron-doped nickel disulfide nanoarray on Ti mesh (Fe0.1-NiS2 NA/Ti) via the sulfidation of its nickel–iron-layered double hydroxide precursor (NiFe-LDH NA/Ti). As a three-dimensional OER anode, Fe0.1-NiS2 NA/Ti exhibits remarkable activity and stability in 1.0 M KOH, with the requirement of a low overpotential of 231 mV to achieve 100 mA·cm?2. In addition, it exhibits excellent activity and durability in 30 wt.% KOH. Notably, this electrode is also efficient for the cathodic hydrogen evolution reaction under alkaline conditions.

Keywords: oxygen evolution reaction, water splitting, nickel disulfide (NiS2), iron doping, nanosheet array

References(37)

1

Züttel, A.; Borgschulte, A.; Schlapbach, L. Hydrogen as a Future Energy Carrier; Wiley-VCH: Weinheim, 2008.

2

Navarro, R. M.; Peña, M. A.; Fierro, J. L. G. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass. Chem. Rev. 2007, 107, 3952-3991.

3

Wurster, B.; Grumelli, D.; Hötger, D.; Gutzler, R.; Kern, K. Driving the oxygen evolution reaction by nonlinear cooperativity in bimetallic coordination catalysts. J. Am. Chem. Soc. 2016, 138, 3623-3626.

4

Park, S.; Shao, Y. Y.; Liu, J.; Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective. Energy Environ. Sci. 2012, 5, 9331-9344.

5

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215-230.

6

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399-404.

7

Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124-4155.

8

Yan, K.; Wu, G. S.; Jin, W. Recent advances in the synthesis of layered, double-hydroxide-based materials and their applications in hydrogen and oxygen evolution. Energy Technol. 2016, 4, 354-368.

9

Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421-1427.

10

Qiao, C.; Zhang, Y.; Zhu, Y. Q.; Cao, C. B.; Bao, X. H.; Xu, J. Q. One-step synthesis of zinc-cobalt layered double hydroxide (Zn-Co-LDH) nanosheets for high-efficiency oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 6878-6883.

11

Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481-16484.

12

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23-39.

13

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Rieger, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452-8455.

14

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584-7588.

15

Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479-6482.

16

Luo, J. S.; Im, J. -H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593-1596.

17

Xiao, C. L.; Li, Y. B.; Lu, X. Y.; Zhao, C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv. Funct. Mater. 2016, 26, 3515-3523.

18

Liu, X. Y.; Wang, X.; Yuan, X. T.; Dong, W. J.; Huang, F. Q. Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. J. Mater. Chem. A 2016, 4, 167-172.

19

Li, L.; Seng, K. H.; Chen, Z. X.; Guo, Z. P.; Liu, H. K. Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries. Nanoscale 2013, 5, 1922-1928.

20

Van der Heide, H.; Hemmel, R.; van Bruggen, C. F.; Haas, C. X-ray photoelectron spectra of 3d transition metal pyrites. J. Solid State Chem. 1980, 33, 17-25.

21

Wu, X. L.; Yang, B.; Li, Z. J.; Lei, L. C.; Zhang, X. W. Synthesis of supported vertical NiS2 nanosheets for hydrogen evolution reaction in acidic and alkaline solution. RSC Adv. 2015, 5, 32976-32982.

22

Yang, S. L.; Yao, H. B.; Gao, M. R.; Shu, S. H. Monodisperse cubic pyrite NiS2 dodecahedrons and microspheres synthesized by a solvothermal process in a mixed solvent: Thermal stability and magnetic properties. CrystEngComm 2009, 11, 1383-1390.

23

Tang, C.; Chen, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351-9355.

24

Xing, Z. C.; Liu, Q.; Asiri, A. M.; Sun, X. P. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702-5707.

25

Cheng, N. Y.; Liu, Q.; Asiri, A. M.; Xing, W.; Sun, X. P. Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density. J. Mater. Chem. A 2015, 3, 23207-23212.

26

Tang, C.; Asiri, A. M.; Sun, X. P. Highly-active oxygen evolution electrocatalyzed by a Fe-doped NiSe nanoflake array electrode. Chem. Commun. 2016, 52, 4529-4532.

27

Zhu, W. X.; Yue, X. Y.; Zhang, W. T.; Yu, S. X.; Zhang, Y. H.; Wang, J.; Wang, J. L. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2016, 52, 1486-1489.

28

Chen, J. S.; Ren, J. W.; Shalom, M.; Fellinger, T.; Antonietti, M. Stainless steel mesh-supported NiS nanosheet array as highly efficient catalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 5509-5516.

29

Wang, T. Y.; Liu, L.; Zhu, Z. W.; Papakonstantious, P.; Hu, J. B.; Liu, H. Y.; Li, M. X. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 2013, 6, 625-633.

30

Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577-9581.

31

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

32

Joya, K. S.; Sala, X. In situ Raman and surface-enhanced Raman spectroscopy on working electrodes: Spectroelectrochemical characterization of water oxidation electrocatalysts. Phys. Chem. Chem. Phys. 2015, 17, 21094-21103.

33

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. -J.; Sokaras, D.; Weng, T. -C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.

34

Mazloomi, K.; Sulaiman, N. B.; Moayedi, H. Electrical efficiency of electrolytic hydrogen production. Int. J. Electroch. Sci. 2012, 7, 3314-3326.

35

Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023-14026.

36

Stern, L. -A.; Feng, L. G; Song, F.; Hu, X. L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347-2351.

37

Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy Environ. Sci. 2016, 9, 478-483.

File
12274_2016_1211_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 May 2016
Revised: 02 July 2016
Accepted: 09 July 2016
Published: 12 August 2016
Issue date: November 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21575137).

Return