Journal Home > Volume 9 , Issue 10

Nanostructured metal sulfides are potential electrode materials for sodium-ion batteries; however, they typically suffer from very poor cycling stability due to large volume changes and dissolution of discharge products. Herein we propose a rational material design strategy for sulfide-based materials to address these problems. Taking nickel sulfide (NiSx) as an example, we demonstrated that its electrochemical performance can be dramatically improved by confining the NiSx nanoparticles in a percolating conductive carbon nanotube network, and stabilizing them with an ultrathin carbon coating layer. The carbon layer serves as a physical barrier to alleviate the effects of both the volume change and dissolution of active materials. The hybrid material exhibited a large reversible specific capacity of > 500 mAh/g and excellent cycling stability over 200 cycles. Given the traditionally problematic nature of NiSx as a battery anode material, we believe that the observed high performance reported here reflects the effectiveness of our material design strategy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries

Show Author's information Feipeng Zhao1,§Qiufang Gong1,§Brian Traynor2Duo Zhang1Jiaojiao Li1Hualin Ye1Fengjiao Chen1Na Han1Yeyun Wang1Xuhui Sun1Yanguang Li1( )
Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
Departments of Physics and ChemistryTrinity CollegeUniversity of DublinDublin 2Ireland

§ These authors contributed equally to this work.

Abstract

Nanostructured metal sulfides are potential electrode materials for sodium-ion batteries; however, they typically suffer from very poor cycling stability due to large volume changes and dissolution of discharge products. Herein we propose a rational material design strategy for sulfide-based materials to address these problems. Taking nickel sulfide (NiSx) as an example, we demonstrated that its electrochemical performance can be dramatically improved by confining the NiSx nanoparticles in a percolating conductive carbon nanotube network, and stabilizing them with an ultrathin carbon coating layer. The carbon layer serves as a physical barrier to alleviate the effects of both the volume change and dissolution of active materials. The hybrid material exhibited a large reversible specific capacity of > 500 mAh/g and excellent cycling stability over 200 cycles. Given the traditionally problematic nature of NiSx as a battery anode material, we believe that the observed high performance reported here reflects the effectiveness of our material design strategy.

Keywords: composite, sodium-ion batteries, metal sulfides, carbon coating layer, cycling stability

References(30)

1

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

2

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884-5901.

3

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.

4

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.

5

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636-11682.

6

Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067-2081.

7

Ye, H. L.; Wang, Y. Y.; Zhao, F. P.; Huang, W. J.; Han, N.; Zhou, J. H.; Zeng, M.; Li, Y. G. Iron-based sodium-ion full batteries. J. Mater. Chem. A 2016, 4, 1754-1761.

8

Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754-21759.

9

Hu, P.; Wang, X. F.; Ma, J.; Zhang, Z. H.; He, J. J.; Wang, X. G.; Shi, S. Q.; Cui, G. L.; Chen, L. Q. NaV3(PO4)3/C nanocomposite as novel anode material for Na-ion batteries with high stability. Nano Energy 2016, 26, 382-391.

10

Liu, Y. P.; Wang, H. T.; Cheng, L.; Han, N.; Zhao, F. P.; Li, P. R.; Jin, C. H.; Li, Y. G. TiS2 nanoplates: A high-rate and stable electrode material for sodium ion batteries. Nano Energy 2016, 20, 168-175.

11

Choi, S. H.; Kang, Y. C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595-1603.

12

Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. —Eur. J. 2014, 20, 11980-11992.

13

Kang, H. Y.; Liu, Y. C.; Cao, K. Z.; Zhao, Y.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Update on anode materials for Na-ion batteries. J. Mater. Chem. A 2015, 3, 17899-17913.

14

Yang, E.; Ji, H.; Jung, Y. Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J. Phys. Chem. C 2015, 119, 26374-26380.

15

Manthiram, A.; Yu, X. W. Ambient temperature sodium-sulfur batteries. Small 2015, 11, 2108-2114.

16

Kim, J. S.; Ahn, H. J.; Ryu, H. S.; Kim, D. J.; Cho, G. B.; Kim, K. W.; Nam, T. H.; Ahn, J. H. The discharge properties of Na/Ni3S2 cell at ambient temperature. J. Power Sources 2008, 178, 852-856.

17

Qin, W.; Chen, T. Q.; Lu, T.; Chua, D. H. C.; Pan, L. K. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries. J. Power Sources 2016, 302, 202-209.

18

Shang, C. Q.; Dong, S. M.; Zhang, S. L.; Hu, P.; Zhang, C. J.; Cui, G. L. A Ni3S2-PEDOT monolithic electrode for sodium batteries. Electrochem. Commun. 2015, 50, 24-27.

19

Go, D. Y.; Park, J.; Noh, P. J.; Cho, G. B.; Ryu, H. S.; Nam, T. H.; Ahn, H. J.; Kim, K. W. Electrochemical properties of monolithic nickel sulfide electrodes for use in sodium batteries. Mater. Res. Bull. 2014, 58, 190-194.

20

Ryu, H. S.; Kim, J. S.; Park, J.; Park, J. Y.; Cho, G. B.; Liu, X. J.; Ahn, I. S.; Kim, K. W.; Ahn, J. H.; Ahn, J. P. et al. Degradation mechanism of room temperature Na/Ni3S2 cells using Ni3S2 electrodes prepared by mechanical alloying. J. Power Sources 2013, 244, 764-770.

21

Pan, Q.; Xie, J.; Zhu, T. J.; Cao, G. S.; Zhao, X. B.; Zhang, S. C. Reduced graphene oxide-induced recrystallization of NiS nanorods to nanosheets and the improved Na-storage properties. Inorg. Chem. 2014, 53, 3511-3518.

22
Park, G. D.; Cho, J. S.; Kang, Y. C. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect. Nanoscale 2015, 7, 16781-16788.https://doi.org/10.1039/C5NR04252F
DOI
23

Wang, T. S.; Hu, P.; Zhang, C. J.; Du, H. P.; Zhang, Z. H.; Wang, X. G.; Chen, S. G.; Xiong, J. W.; Cui, G. L. Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl. Mater. Interfaces 2016, 8, 7811-7817.

24

Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849-15857.

25

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452-8455.

26

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.

27

Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426-430.

28

Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057-5115.

29

Wang, X. X.; Wang, B.; Zhong, J.; Zhao, F. P.; Han, N.; Huang, W. J.; Zeng, M.; Fan, J.; Li, Y. G. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 2016, 9, 1497-1506.

30

Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245-4269.

File
nr-9-10-3162_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 June 2016
Revised: 29 June 2016
Accepted: 03 July 2016
Published: 08 August 2016
Issue date: October 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51472173 and 51522208), the Natural Science Foundation of Jiangsu Province (Nos. BK20140302 and SBK2015010320), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Collaborative Innovation Center of Suzhou Nano Science and Technology.

Return