AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Functional interface based on silicon artificial chamfer nanocylinder arrays (CNCAs) with underwater superoleophobicity and anisotropic properties

Wendong LiuXueyao LiuSiyuan XiangYixin ChenLiping FangBai Yang( )
State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
Show Author Information

Graphical Abstract

Abstract

A functional interface based on silicon chamfer nanocylinder arrays (CNCAs) was successfully fabricated by carrying out secondary etching of silicon nanopillar arrays via a facile inclined etching method. The structure of the novel CNCAs was finely modulated by varying the nanopillar array structure and the etching conditions. The underwater oil wetting behavior of this CNCAs-based interface can be easily modulated from superoleophilic (oil contact angle (OCA) of ~8.13°) state to superoleophobic (OCA of ~163.79°) state by modifying the surface using different substances. Moreover, a reversible transformation of underwater oil wetting behavior from superoleophobic (OCA of ~155.67°) state to oleophilic (OCA of ~31.27°) state was achieved by grafting a temperature-responsive polymer onto this specific asymmetric structure. The functional interface exhibited isotropic wetting behavior under certain oleophilic conditions. Chemically heterogeneous structures, obtained via asymmetry modification of CNCAs, exhibited amphiphobic properties while maintaining their anisotropic wetting ability.

Electronic Supplementary Material

Download File(s)
nr-9-10-3141_ESM.pdf (2.2 MB)

References

1

Darmanin, T.; Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 2015, 18, 273-285.

2

Wang, B.; Liang, W. X.; Guo, Z.G.; Liu, W. M. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: Anew strategy beyond nature. Chem. Soc. Rev. 2015, 44, 336-361.

3

Sato, O.; Kubo, S.; Gu, Z. Z. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Acc. Chem. Res. 2009, 42, 1-10.

4

Liu, K. S.; Jiang, L. Bio-inspired design of multiscale structures for function integration. Nano Today 2011, 6, 155-175.

5

Tian, Y.; Su, B.; Jiang, L. Interfacial material system exhibiting superwettability. Adv. Mater. 2014, 26, 6872-6897.

6

Liu, K. S.; Tian, Y.; Jiang, L. Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Prog. Mater. Sci. 2013, 58, 503-564.

7

Gogolides, E.; Ellinas, K.; Tserepi, A. Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron. Eng. 2015, 132, 135-155.

8

Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857-1860.

9

Shirtcliffe, N. J.; McHale, G.; Atherton, S.; Newton, M. I. An introduction to superhydrophobicity. Adv. Colloid Interface Sci. 2010, 161, 124-138.

10

Yao, X.; Gao, J.; Song, Y. L.; Jiang, L. Superoleophobic surfaces with controllable oil adhesion and their application in oil transportation. Adv. Funct. Mater. 2011, 21, 4270-4276.

11

Pan, S. J.; Kota, A. K.; Mabry, J. M.; Tuteja, A. Superomniphobic surfaces for effective chemical shielding. J. Am. Chem. Soc. 2013, 135, 578-581.

12

Zhang, J. P.; Seeger, S. Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater. 2011, 21, 4699-4704.

13

Tuteja, A.; Choi, W.; Ma, M. L.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E. Designing superoleophobic surfaces. Science 2007, 318, 1618-1622.

14

Bellanger, H.; Darmanin, T.; Taffin de Givenchy, E.; Guittard, F. Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chem. Rev. 2014, 114, 2694-2716.

15

Cai, Y.; Lin, L.; Xue, Z. X.; Liu, M. J.; Wang, S. T.; Jiang, L. Filefish-inspired surface design for anisotropic underwater oleophobicity. Adv. Funct. Mater. 2014, 24, 809-816.

16

Ma, W.; Xu, H.; Takahara, A. Substrate-independent underwater superoleophobic surfaces inspired by fish-skin and mussel-adhesives. Adv. Mater. Interfaces 2014, 1, 1300092.

17

Zhang, J. P.; Seeger, S. Superoleophobic coatings with ultralow sliding angles based on silicone nanofilaments. Angew. Chem., Int. Ed. 2011, 50, 6652-6656.

18

Pechook, S.; Kornblum, N.; Pokroy, B. Bio-inspired superoleophobic fluorinated wax crystalline surfaces. Adv. Funct. Mater. 2013, 23, 4572-4576.

19

Kota, A. K.; Li, Y. X.; Mabry, J. M.; Tuteja, A. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. Adv. Mater. 2012, 24, 5838-5843.

20

Lao, Z. X.; Hu, Y. L.; Zhang, C. C.; Yang, L.; Li, J. W.; Chu, J. R.; Wu, D. Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles. ACS Nano 2015, 9, 12060-12069.

21

Huang, C. -Y.; Lai, M. -F.; Liu, W. -L.; Wei, Z. -H. Anisotropic wettability of biomimetic micro/nano dual-scale inclined cones fabricated by ferrofluid-molding method. Adv. Funct. Mater. 2015, 25, 2670-2676.

22

Wu, G. X.; Cho, Y.; Choi, I. -S.; Ge, D. T.; Li, J.; Han, H. N.; Lubensky, T.; Yang, S. Directing the deformation paths of soft metamaterials with prescribed asymmetric units. Adv. Mater. 2015, 27, 2747-2752.

23

Ai, B.; Wang, L. M.; Möhwald, H.; Yu, Y.; Zhang, G. Asymmetric half-cone/nanohole array films with structural and directional reshaping of extraordinary optical transmission. Nanoscale 2014, 6, 8997-9005.

24

Malvadkar, N. A.; Hancock, M. J.; Sekeroglu, K.; Dressick, W. J.; Demirel, M. C. An engineered anisotropic nanofilm with unidirectional wetting properties. Nat. Mater. 2010, 9, 1023-1028.

25

Chu, K. -H.; Xiao, R.; Wang, E. N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 2010, 9, 413-417.

26

O'Brien, M. N.; Jones, M. R.; Lee, B.; Markin, C. A. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater. 2015, 14, 833-840.

27

Zhao, W.; Luo, J.; Shan, S. Y.; Lombardi, J. P.; Xu, Y.; Cartwright, K.; Lu, S. S.; Poliks, M.; Zhong, C. -J. Nanoparticle-structured highly sensitive and anisotropic gauge sensors. Small 2015, 11, 4509-4516.

28

Duempelmann, L.; Casari, D.; Luu-Dinh, A.; Gallinet, B.; Novotny, L. Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 2015, 9, 12383-12391.

29

Lin, J. J.; Liang, L. B.; Ling, X.; Zhang, S. Q.; Mao, N. N.; Zhang, N.; Sumpter, B. G.; Meunier, V.; Tong, L. M.; Zhang, J. Enhanced Raman scattering on in-plane anisotropic layered materials. J. Am. Chem. Soc. 2015, 137, 15511-11517.

30

Jeon, T. Y.; Park, S. -G.; Kim, D. -H.; Kim, S. -H. Standing- wave-assisted creation of nanopillar arrays with vertically integrated nanogaps for SERS-active substrates. Adv. Funct. Mater. 2015, 25, 4681-4688.

31

Yilmaz, M.; Kuloglu, H. B.; Erdogan, H.; Cetin, S. S.; Yavuz, M. S.; Ince, G. O.; Demirel, G. Light-driven unidirectional liquid motion on anisotropic gold nanorod arrays. Adv. Mater. Interfaces 2015, 2, 1500226.

32

Agapov, R. L.; Boreyko, J. B.; Briggs, D. P.; Srijanto, B. R.; Retterer, S. T.; Collier, C. P.; Lavrik, N. V. Asymmetric wettability of nanostructures directs leidenfrost droplets. ACS Nano 2014, 8, 860-867.

33

Wang, T. Q.; Chen, H. X.; Liu, K.; Li, Y.; Xue, P. H.; Yu, Y.; Wang, S. L.; Zhang, J. H.; Kumacheva, E.; Yang, B. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas-liquid separation. Nanoscale 2014, 6, 3846-3853.

34

Wang, S. L.; Wang, T. Q.; Ge, P.; Xue, P. H.; Ye, S. S.; Chen, H. X.; Li, Z. B.; Zhang, J. H.; Yang, B. Controlling flow behavior of water in microfluidics with a chemically patterned anisotropic wetting surface. Langmuir 2015, 31, 4032-4039.

35

Liu, W. D.; Liu, X. Y.; Fangteng, J. Z.; Wang, S. L.; Fang, L. P.; Shen, H. Z.; Xiang, S. Y.; Sun, H. C.; Yang, B. Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties. Nanoscale 2014, 6, 13845-13853.

36

Liu, H. L.; Zhang, X. Q.; Wang, S. T.; Jiang, L. Underwater thermoresponsive surface with switchable oil-wettability between superoleophobicity and superoleophilicity. Small 2015, 11, 3338-3342.

37

Xue, B. L.; Gao, L. C.; Hou, Y. P.; Liu, Z. W.; Jiang, L. Temperature controlled water/oil wettability of a surface fabricated by a block copolymer: Application as a dual water/oil on-off switch. Adv. Mater. 2013, 25, 273-277.

38

Cassie, A. B. D.; Baster, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546-551.

39

Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988-994.

Nano Research
Pages 3141-3151
Cite this article:
Liu W, Liu X, Xiang S, et al. Functional interface based on silicon artificial chamfer nanocylinder arrays (CNCAs) with underwater superoleophobicity and anisotropic properties. Nano Research, 2016, 9(10): 3141-3151. https://doi.org/10.1007/s12274-016-1196-5

589

Views

14

Crossref

N/A

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 28 May 2016
Revised: 29 June 2016
Accepted: 03 July 2016
Published: 25 July 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return