Journal Home > Volume 9 , Issue 10

A series of novel catalysts consisting of nanosized Au particles confined in micro-mesoporous ZSM-5/SBA-15 (ZSBA) materials with platelet (PL), rod (RD), and hexagonal-prism (HP) morphologies have been synthesized in situ. These catalysts possess both SBA-15 and ZSM-5 structures and exhibit excellent stability of their active sites by confinement of the Au nanoparticles (NPs) within ZSBA. The catalysts have been characterized in depth to understand their structure–property relationships. The gold NP dimensions and the pore structure of the catalysts, which were found to be sensitive to calcination temperature and synthetic conditions, are shown to play vital roles in the reduction of 4-nitrophenol. Au/ZSBA-PL, with short mesochannels (210 nm) and a large pore diameter (6.7 nm), exhibits high catalytic performance in the reduction of 4-nitrophenol, whereas Au/ZSBA-HP and Au/ZSBA-RD, with long mesochannels and relatively smaller pore sizes, show poor catalytic activities. In the case of catalysts with different gold NP sizes, Au/ZSBA-PL-350 with an Au NP diameter of 4.0 nm exhibits the highest reaction rate constant (0.14 min-1) and turnover frequency (0.0341 s-1). In addition, the effect of the reaction parameters on the reduction of 4-nitrophenol has been systematically investigated. A possible mechanism for 4-nitrophenol reduction over the Au/ZSBA catalysts is proposed.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Morphology-selective synthesis of active and durable gold catalysts with high catalytic performance in the reduction of 4-nitrophenol

Show Author's information Daowei Gao1Xin Zhang1( )Xiaoping Dai1Yuchen Qin1Aijun Duan1( )Yanbing Yu1Hongying Zhuo1Hairui Zhao1Pengfang Zhang1Yan Jiang1Jianmei Li2Zhen Zhao2
State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumBeijing102249China
College of ScienceChina University of PetroleumBeijing102249China

Abstract

A series of novel catalysts consisting of nanosized Au particles confined in micro-mesoporous ZSM-5/SBA-15 (ZSBA) materials with platelet (PL), rod (RD), and hexagonal-prism (HP) morphologies have been synthesized in situ. These catalysts possess both SBA-15 and ZSM-5 structures and exhibit excellent stability of their active sites by confinement of the Au nanoparticles (NPs) within ZSBA. The catalysts have been characterized in depth to understand their structure–property relationships. The gold NP dimensions and the pore structure of the catalysts, which were found to be sensitive to calcination temperature and synthetic conditions, are shown to play vital roles in the reduction of 4-nitrophenol. Au/ZSBA-PL, with short mesochannels (210 nm) and a large pore diameter (6.7 nm), exhibits high catalytic performance in the reduction of 4-nitrophenol, whereas Au/ZSBA-HP and Au/ZSBA-RD, with long mesochannels and relatively smaller pore sizes, show poor catalytic activities. In the case of catalysts with different gold NP sizes, Au/ZSBA-PL-350 with an Au NP diameter of 4.0 nm exhibits the highest reaction rate constant (0.14 min-1) and turnover frequency (0.0341 s-1). In addition, the effect of the reaction parameters on the reduction of 4-nitrophenol has been systematically investigated. A possible mechanism for 4-nitrophenol reduction over the Au/ZSBA catalysts is proposed.

Keywords: 4-nitrophenol, gold catalysis, porous material, environmental pollution

References(49)

1

Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chem. Soc. Rev. 2012, 41, 5577-5587.

2

Kovach, I. M.; Enyedy, E. J. Active-site-dependent elimination of 4-nitrophenol from 4-nitrophenyl alkylphosphonyl serine protease adducts. J. Am. Chem. Soc. 1998, 120, 258-263.

3

Gao, D. W.; Duan, A. J.; Zhang, X.; Chi, K. B.; Zhao, Z.; Li, J. M.; Qin, Y. C.; Wang, X. L.; Xu, C. M. Self-assembly of monodispersed hierarchically porous Beta-SBA-15 with different morphologies and its hydro-upgrading performances for FCC gasoline. J. Mater. Chem. A 2015, 3, 16501-16512.

4

Gao, D. W.; Duan, A. J.; Zhang, X.; Zhao, Z.; E, H.; Li, J. M.; Wang, H. Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS. Appl. Catal. B 2015, 165, 269-284.

5

Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W.; Li, Y. D. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365-1372.

6

Zhang, J.; Liu, Y.; Lv, J.; Li, G. X. A colorimetric method for α-glucosidase activity assay and its inhibitor screening based on aggregation of gold nanoparticles induced by specific recognition between phenylenediboronic acid and 4-aminophenyl-α-d-glucopyranoside. Nano Res. 2015, 8, 920-930.

7

Zhang, X.; Corma, A. Supported gold(III) catalysts for highly efficient three-component coupling reactions. Angew. Chem., Int. Ed. 2008, 47, 4358-4361.

8

Li, Z. -X.; Xue, W.; Guan, B. -T.; Shi, F. -B.; Shi, Z. -J.; Jiang, H.; Yan, C. -H. A conceptual translation of homogeneous catalysis into heterogeneous catalysis: Homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter. Nanoscale 2013, 5, 1213-1220.

9

Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F. Gold catalysis in the reactions of 1,3-dicarbonyls with nucleophiles. Green Chem. 2003, 5, 64-67.

10

Gao, D. W.; Zhang, X.; Yang, Y.; Dai, X. P.; Sun, H.; Qin, Y. C.; Duan, A. J. Supported single Au(III) ion catalysts for high performance in the reactions of 1,3-dicarbonyls with alcohols. Nano Res. 2016, 9, 985-995.

11

Sarkar, S.; Balisetty, L.; Shanbogh, P. P.; Peter, S. C. Effect of ordered and disordered phases of unsupported Ag3In nanoparticles on the catalytic reduction of p-nitrophenol. J. Catal. 2014, 318, 143-150.

12

Cárdenas-Lizana, F.; Lamey, D.; Perret, N.; Gómez-Quero, S.; Kiwi-Minsker, L.; Keane, M. A. Au/Mo2N as a new catalyst formulation for the hydrogenation of p-chloronitrobenzene in both liquid and gas phases. Catal. Commun. 2012, 21, 46-51.

13

Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246-262.

14

Chang, Y. -C.; Chen, D. -H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 2009, 165, 664-669.

15

Chiou, J. -R.; Lai, B. -H.; Hsu, K. -C.; Chen, D. -H. One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J. Hazard. Mater. 2013, 248-249, 394-400.

16

Sahiner, N.; Ozay, H.; Ozay, O.; Aktas, N. A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols. Appl. Catal. B 2010, 101, 137-143.

17

Oturan, M. A.; Peiroten, J.; Chartrin, P.; Acher, A. J. Complete destruction of p-nitrophenol in aqueous medium by electro-fenton method. Environ. Sci. Technol. 2000, 34, 3474-3479.

18

Modirshahla, N.; Behnajady, M. A.; Mohammadi-Aghdam, S. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation. J. Hazard. Mater. 2008, 154, 778-786.

19

Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W. Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Res. 2015, 8, 3992-4006.

20

Xiong, W.; Sikdar, D.; Yap, L. W.; Guo, P. Z.; Premaratne, M.; Li, X. Y.; Cheng, W. L. Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Res. 2016, 9, 415-423.

21

Xia, Y. Y.; Shi, Z. Q.; Lu, Y. Gold microspheres with hierarchical structure/conducting polymer composite film: Preparation, characterization and application as catalyst. Polymer 2010, 51, 1328-1335.

22

Zhang, M. M.; Liu, L.; Wu, C. L.; Fu, G. Q.; Zhao, H. Y.; He, B. L. Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles. Polymer 2007, 48, 1989-1997.

23

Chang, G. H.; Luo, Y. L.; Lu, W. B.; Qin, X. Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ag nanoparticles decorated polyaniline nanofibers: Synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catal. Sci. Technol. 2012, 2, 800-806.

24

Pozun, Z. D.; Rodenbusch, S. E.; Keller, E.; Tran, K.; Tang, W. J.; Stevenson, K. J.; Henkelman, G. A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J. Phys. Chem. C 2013, 117, 7598-7604.

25

Wang, P. -P.; Yu, Q. Y.; Long, Y.; Hu, S.; Zhuang, J.; Wang, X. Multivalent assembly of ultrasmall nanoparticles: One-, two-, and three-dimensional architectures of 2 nm gold nanoparticles. Nano Res. 2012, 5, 283-291.

26

Gao, D. W.; Zheng, A. M.; Zhang, X.; Sun, H.; Dai, X. P.; Yang, Y.; Wang, H.; Qin, Y. C.; Xu, S. T.; Duan, A. J. Mercaptosilane-assisted synthesis of sub-nanosized Pt particles within hierarchically porous ZSM-5/SBA-15 materials and their enhanced hydrogenation properties. Nanoscale 2015, 7, 10918-10924.

27

Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871-879.

28

Katiyar, A.; Yadav, S.; Smirniotis, P. G.; Pinto, N. G. Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. J. Chromatogr. A 2006, 1122, 13-20.

29

Chen, S. -Y.; Tang, C. -Y.; Chuang, W. -T.; Lee, J. -J.; Tsai, Y. -L.; Chan, J. C. C.; Lin, C. -Y.; Liu, Y. -C.; Cheng, S. A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels. Chem. Mater. 2008, 20, 3906-3916.

30

Kang, Y. J.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 2010, 132, 7568-7569.

31

Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.

32

Yu, Y.; Xiong, G.; Li, C.; Xiao, F. -S. Characterization of aluminosilicate zeolites by UV Raman spectroscopy. Micro. Meso. Mater. 2001, 46, 23-34.

33

Knops-Gerrits, P. -P.; De Vos, D. E.; Feijen, E. J. P.; Jacobs, P. A. Raman spectroscopy on zeolites. Microporous Mater. 1997, 8, 3-17.

34

Borodko, Y.; Ager, J. W.; Marti, G. E.; Song, H.; Niesz, K.; Somorjai, G. A. Structure sensitivity of vibrational spectra of mesoporous silica SBA-15 and Pt/SBA-15. J. Phys. Chem. B 2005, 109, 17386-17390.

35

Jiang, J. L.; Yang, Y.; Duanmu, C.; Xu, Y.; Feng, L. D.; Gu, X.; Chen, J. Preparation of hollow ZSM-5 crystals in the presence of polyacrylamide. Micro. Meso. Mater. 2012, 163, 11-20.

36

Liu, G. P.; Xiangli, F.; Wei, W.; Liu, S. N.; Jin, W. Q. Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach. Chem. Eng. J. 2011, 174, 495-503.

37

Panpa, W.; Jinawath, S. Synthesis of ZSM-5 zeolite and silicalite from rice husk ash. Appl. Catal. B 2009, 90, 389-394.

38

Melero, J. A.; Stucky, G. D.; van Grieken, R.; Morales, G. Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups. J. Mater. Chem. 2002, 12, 1664-1670.

39

Lévy, R.; Thanh, N. T. K.; Doty, R. C.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J.; Brust, M.; Fernig, D. G. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 10076-10084.

40

Ojea-Jiménez, I.; Puntes, V. Instability of cationic gold nanoparticle bioconjugates: The role of citrate ions. J. Am. Chem. Soc. 2009, 131, 13320-13327.

41

Zhang, T.; Liu, J.; Wang, D. X.; Zhao, Z.; Wei, Y. C.; Cheng, K. Y.; Jiang, G. Y.; Duan, A. J. Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe-Cu nanocomposite catalysts: The Fe-Cu bimetallic effect. Appl. Catal. B 2014, 148-149, 520-531.

42

Yuan, J.; Huang, X.; Chen, M. X.; Shi, J. W.; Shangguan, W. F. Ozone-assisted photocatalytic degradation of gaseous acetaldehyde on TiO2/M-ZSM-5 (M = Zn, Cu, Mn). Catal. Today 2013, 201, 182-188.

43

Zhang, X.; Shi, H.; Xu, B. -Q. Vital roles of hydroxyl groups and gold oxidation states in Au/ZrO2 catalysts for 1,3-butadiene hydrogenation. J. Catal. 2011, 279, 75-87.

44

Wei, Y. C.; Liu, J.; Zhao, Z.; Duan, A. J.; Jiang, G. Y. The catalysts of three-dimensionally ordered macroporous Ce1-xZrxO2-supported gold nanoparticles for soot combustion: The metal-support interaction. J. Catal. 2012, 287, 13-29.

45

Lin, Y. Y.; Qiao, Y.; Wang, Y. J.; Yan, Y.; Huang, J. B. Self-assembled laminated nanoribbon-directed synthesis of noble metallic nanoparticle-decorated silica nanotubes and their catalytic applications. J. Mater. Chem. 2012, 22, 18314-18320.

46

Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T. Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C 2007, 111, 4596-4605.

47

Zhang, H. J.; Li, X. Y.; Chen, G. H. Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. J. Mater. Chem. 2009, 19, 8223-8231.

48

Xu, W. L.; Kong, J. S.; Yeh, Y. T. E.; Chen, P. Single- molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 2008, 7, 992-996.

49

Yang, Y.; Zhang, W.; Zhang, Y.; Zheng, A. M.; Sun, H.; Li, X. S.; Liu, S. Y.; Zhang, P. F.; Zhang, X. A single Au nanoparticle anchored inside the porous shell of periodic mesoporous organosilica hollow spheres. Nano Res. 2015, 8, 3404-3411.

File
nr-9-10-3099_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 May 2016
Revised: 26 June 2016
Accepted: 29 June 2016
Published: 25 August 2016
Issue date: October 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21573286, 21576288, and 21276277), the Ministry of Science and Technology of China (Nos. 2011BAK15B05 and 2015AA034603), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130007110003), Science Foundation of China Univer¬sity of Petroleum, Beijing (No. 2462015YQ0304).

Return