Journal Home > Volume 9 , Issue 10

The formation, characterization, and purification of well-defined stoichiometric clusters of metallic nanoparticles, particularly in the form of dimers or trimers, are important and formidable challenges in nanoscience. Here we show that flow cytometry can be used as a high-throughput method to determine the relative distribution of oligomeric clusters of molecularly linked gold nanoparticles in bulk solution at the single-particle level with good statistics. This unique information would be near impossible to obtain using traditional characterization techniques. The flow cytometric approach is utilized to provide fast feedback for the synthesis optimization of the complex reaction between citrate-stabilized gold nanoparticles and bi-functional molecular wires with dithiocarbamate anchoring groups. Finally, we demonstrate that flow cytometry can be used to significantly increase the proportion of AuNP dimers from an oligomer-rich polydisperse sample by size-selective sorting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Quantifying and sorting of gold nanoparticle dimers from complex reaction mixtures using flow cytometry

Show Author's information Jens B. Simonsen1( )Nini E. A. Reeler1,2Anna Fossum3Knud A. Lerstrup1Bo W. Laursen1Kasper Nørgaard1( )
Universitetsparken 5Nano-Science Center & Department of ChemistryUniversity of CopenhagenCopenhagenDK-2100Denmark
Niels Jensens Vej 2Sino-Danish Centre for Education and Research (SDC)AarhusDK-8000Denmark
Ole Maaløes Vej 5Biotech Research and Innovation Centre (BRIC)University of CopenhagenCopenhagenDK-2200Denmark

Abstract

The formation, characterization, and purification of well-defined stoichiometric clusters of metallic nanoparticles, particularly in the form of dimers or trimers, are important and formidable challenges in nanoscience. Here we show that flow cytometry can be used as a high-throughput method to determine the relative distribution of oligomeric clusters of molecularly linked gold nanoparticles in bulk solution at the single-particle level with good statistics. This unique information would be near impossible to obtain using traditional characterization techniques. The flow cytometric approach is utilized to provide fast feedback for the synthesis optimization of the complex reaction between citrate-stabilized gold nanoparticles and bi-functional molecular wires with dithiocarbamate anchoring groups. Finally, we demonstrate that flow cytometry can be used to significantly increase the proportion of AuNP dimers from an oligomer-rich polydisperse sample by size-selective sorting.

Keywords: characterization, nanoparticles, flow cytometry, sorting, gold nanoparticle dimers

References(21)

1

Fernandez, Y. D.; Sun, L.; Gschneidtner, T.; Moth- Poulsen, K. Research update: Progress in synthesis of nanoparticle dimers by self-assembly. APL Mater. 2014, 2, 010702.

2

Hofmann, A.; Schmiel, P.; Stein, B.; Graf, C. Controlled formation of gold nanoparticle dimers using multivalent thiol ligands. Langmuir 2011, 27, 15165-15175.

3

Sönnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741-745.

4

Thacker, V. V.; Herrmann, L. O.; Sigle, D. O.; Zhang, T.; Liedl, T.; Baumberg, J. J.; Keyser, U. F. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 2014, 5, 3448.

5

Chen, J. I. L.; Chen, Y.; Ginger, D. S. Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J. Am. Chem. Soc. 2010, 132, 9600-9601.

6

Cheng, Y. N.; Wang, M.; Borghs, G.; Chen, H. Z. Gold nanoparticle dimers for plasmon sensing. Langmuir 2011, 27, 7884-7891.

7

Dadosh, T.; Gordin, Y.; Krahne, R.; Khivrich, I.; Mahalu, D.; Frydman, V.; Sperling, J.; Yacoby, A.; Bar-Joseph, I. Measurement of the conductance of single conjugated molecules. Nature 2005, 436, 677-680.

8

Jain, T.; Tang, Q. X.; Bjørnholm, T.; Nørgaard, K. Wet chemical synthesis of soluble gold nanogaps. Acc. Chem. Res. 2014, 47, 2-11.

9

Zohar, N.; Chuntonov, L.; Haran, G. The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. J. Photoch. Photobio. C 2014, 21, 26-39.

10

Lee, K.; Irudayaraj, J. Correct spectral conversion between surface-enhanced Raman and plasmon resonance scattering from nanoparticle dimers for single-molecule detection. Small 2013, 9, 1106-1115.

11

Gschneidtner, T. A.; Fernandez, Y. A. D.; Moth-Poulsen, K. Progress in self-assembled single-molecule electronic devices. J. Mater. Chem. C 2013, 1, 7127-7133.

12

Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 2010, 27, 796-810.

13

Reeler, N. E. A.; Lerstrup, K. A.; Somerville, W.; Speder, J.; Petersen, S. V.; Laursen, B. W.; Arenz, M.; Qiu, X. H.; Vosch, T.; Nørgaard, K. Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires. Sci. Rep. 2015, 5, 15273.

14

Fujii, S.; Matsuura, T.; Sunami, T.; Nishikawa, T.; Kazuta, Y.; Yomo, T. Liposome display for in vitro selection and evolution of membrane proteins. Nat. Protoc. 2014, 9, 1578-1591.

15

Orozco, A. F.; Lewis, D. E. Flow cytometric analysis of circulating microparticles in plasma. Cytometry A 2010, 77, 502-514.

16

Pospichalova, V.; Svoboda, J.; Dave, Z.; Kotrbova, A.; Kaiser, K.; Klemova, D.; Ilkovics, L.; Hampl, A.; Crha, I.; Jandakova, E. et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J. Extracell. Vesicles 2015, 4, 25530.

17

Simonsen, J. B. A liposome-based size calibration method for measuring microvesicles by flow cytometry. J. Thromb. Haemost. 2016, 14, 186-190.

18

Temmerman, K.; Nickel, W. A novel flow cytometric assay to quantify interactions between proteins and membrane lipids. J. Lipid Res. 2009, 50, 1245-1254.

19

Zucker, R. M.; Ortenzio, J. N. R.; Boyes, W. K. Characterization, detection, and counting of metal nano-particles using flow cytometry. Cytometry A 2016, 89, 169-183.

20

Zhu, S. B.; Yang, L. L.; Long, Y.; Gao, M.; Huang, T. X.; Hang, W.; Yan, X. M. Size differentiation and absolute quantification of gold nanoparticles via single particle detection with a laboratory-built high-sensitivity flow cytometer. J. Am. Chem. Soc. 2010, 132, 12176-12178.

21

Zhu, S. B.; Ma, L.; Wang, S.; Chen, C. X.; Zhang, W. Q.; Yang, L. L.; Hang, W.; Nolan, J. P.; Wu, L. N.; Yan, X. M. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano 2014, 8, 10998-11006.

File
nr-9-10-3093_ESM.pdf (536.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 May 2016
Revised: 23 June 2016
Accepted: 24 June 2016
Published: 22 August 2016
Issue date: October 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We would like to thank Inger Margrethe Jensen for her valuable guidance to the TEM technique. J. B. S. gratefully acknowledges support from Carlsberg Foundation.

Return