Journal Home > Volume 9 , Issue 10

A simple and reproducible method to control the thickness of black phosphorus flakes in real time using a UV/ozone treatment is demonstrated. Back-gated black phosphorus field-effect transistors (FETs) were fabricated using thick black phosphorus flakes obtained by thinning of black phosphorus, as oxygen radicals generated by UV irradiation formed phosphorus oxides on the surface. In order to monitor the thickness effect on the electrical properties, the fabricated FETs were loaded in the UV/ozone chamber, where both the optical (micro-Raman spectroscopy and optical microscopy) and electrical properties (current–voltage characteristics) were monitored in situ. We observed an intensity decrease of the Raman modes of black phosphorus while the field-effect mobility and on/off ratio increased by 48% and 6,800%, respectively. The instability in ambient air limits the investigation and implementation of ultra-thin black phosphorus. However, the method reported in this study allowed us to start with thick black phosphorous flakes, providing a reliable approach for optimizing the electrical performance of black phosphorus-based electronic devices. We believe that these results can motivate further studies using mono- and few-layer black phosphorus.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Sub-2.0-nm Ru and composition-tunable RuPt nanowire networks

Show Author's information Weiyue Zhao1Dabing Huang1Qiang Yuan1( )Xun Wang2( )
College of Chemistry and Chemical EngineeringGuizhou UniversityGuiyangGuiyang550025China
Department of ChemistryTsinghua UniversityBeijing100084China

Abstract

A simple and reproducible method to control the thickness of black phosphorus flakes in real time using a UV/ozone treatment is demonstrated. Back-gated black phosphorus field-effect transistors (FETs) were fabricated using thick black phosphorus flakes obtained by thinning of black phosphorus, as oxygen radicals generated by UV irradiation formed phosphorus oxides on the surface. In order to monitor the thickness effect on the electrical properties, the fabricated FETs were loaded in the UV/ozone chamber, where both the optical (micro-Raman spectroscopy and optical microscopy) and electrical properties (current–voltage characteristics) were monitored in situ. We observed an intensity decrease of the Raman modes of black phosphorus while the field-effect mobility and on/off ratio increased by 48% and 6,800%, respectively. The instability in ambient air limits the investigation and implementation of ultra-thin black phosphorus. However, the method reported in this study allowed us to start with thick black phosphorous flakes, providing a reliable approach for optimizing the electrical performance of black phosphorus-based electronic devices. We believe that these results can motivate further studies using mono- and few-layer black phosphorus.

Keywords: alloy, electrocatalysis, Pt, Ru, nanowire networks

References(52)

1

Zahmakıran, M.; Tonbul, Y.; Özkar, S. Ruthenium(0) nano clusters stabilized by a nanozeolite framework: Isolable, reusable, and green catalyst for the hydrogenation of neat aromatics under mild conditions with the unprecedented catalytic activity and lifetime. J. Am. Chem. Soc. 2010, 132, 6541-6549.

2

Anderson, R.; Griffin, K.; Johnston, P.; Alsters, P. L. Selective oxidation of alcohols to carbonyl compounds and carboxylic acids with platinum group metal catalysts. Adv. Synth. Catal. 2003, 345, 517-523.

3

Fellay, C.; Dyson, P. J.; Laurenczy, G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew. Chem., Int. Ed. 2008, 47, 3966-3968.

4

Xiao, C. X.; Cai, Z. P.; Wang, T.; Kou, Y.; Yan, N. Aqueous-phase Fischer-Tropsch synthesis with a ruthenium nanocluster catalyst. Angew. Chem., Int. Ed. 2008, 47, 746-749.

5

Osada, M.; Sato, T.; Watanabe, M.; Adschiri, T.; Arai, K. Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy Fuels 2004, 18, 327-333.

6

Nishibayashi, Y.; Iwai, S.; Hidai, M. Bimetallic system for nitrogen fixation: Ruthenium-assisted protonation of coordinated N2 on tungsten with H2. Science 1998, 279, 540-542.

7

Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325-330.

8

Yin, A. -X.; Liu, W. -C.; Ke, J.; Zhu, W.; Gu, J.; Zhang, Y. -W.; Yan, C. -H. Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: Controlled synthesis and DFT calculations. J. Am. Chem. Soc. 2012, 134, 20479-20489.

9

Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Three-dimensional hierarchical Pt-Cu superstructures. Nano Res. 2015, 8, 832-838.

10

Zheng, F. L.; Wong, W. -T.; Yung, K. -F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410-417.

11

Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333-338.

12

Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao, S. J. Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571-580.

13

Xiang, J.; Li, P.; Chong, H. B.; Feng, L.; Fu, F. Y.; Wang, Z.; Zhang, S. L.; Zhu, M. Z. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res. 2014, 7, 1337-1343.

14

Wang, Y.; Ren, J. W.; Deng, K.; Gui, L. L.; Tang, Y. Q. Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem. Mater. 2000, 12, 1622-1627.

15

Pan, C.; Pelzer, K.; Philippot, K.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M. J. Ligand-stabilized ruthenium nanoparticles: Synthesis, organization, and dynamics. J. Am. Chem. Soc. 2001, 123, 7584-7593.

16

Yan, X. P.; Liu, H. F.; Liew, K. Y. Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction. J. Mater. Chem. 2001, 11, 3387-3391.

17

Viau, G.; Brayner, R.; Poul, L.; Chakroune, N.; Lacaze, E.; Fiévet-Vincent, F.; Fiévet, F. Ruthenium nanoparticles: Size, shape, and self-assemblies. Chem. Mater. 2003, 15, 486-494.

18

Tsukatani, T.; Fujihara, H. New method for facile synthesis of amphiphilic thiol-stabilized ruthenium nanoparticles and their redox-active ruthenium nanocomposite. Langmuir 2005, 21, 12093-12095.

19

Zhai, H. T.; Wang, R. R.; Wang, W. Q.; Wang, X.; Cheng, Y.; Shi, L. J.; Liu, Y. Q.; Sun, J. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. Nano Res. 2015, 8, 3205-3215.

20

Yuan, J. K.; Liu, X. G.; Akbulut, O.; Hu, J. Q.; Suib, S. L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332-336.

21

Nerowski, A.; Opitz, J.; Baraban, L.; Cuniberti, G. Bottom-up synthesis of ultrathin straight platinum nanowires: Electric field impact. Nano Res. 2013, 6, 303-311.

22

Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C. Y.; Zhang, K. L.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895-901.

23

Yuan, Q.; Zhou, Z. Y.; Zhuang, J.; Wang, X. Seed displacement, epitaxial synthesis of Rh/Pt bimetallic ultrathin nanowires for highly selective oxidizing ethanol to CO2. Chem. Mater. 2010, 22, 2395-2402.

24

Yang, S. C.; Hong, F.; Wang, L. Q.; Guo, S. W.; Song, X. P.; Ding, B. J.; Yang, Z. M. Ultrathin Pt-based alloy nanowire networks: Synthesized by CTAB assistant two-phase water-chloroform micelles. J. Phys. Chem. C 2010, 114, 203-207.

25

Hu, S.; Liu, H. L.; Wang, P. P.; Wang, X. Inorganic nano structures with sizes down to 1 nm: A macromolecule analogue. J. Am. Chem. Soc. 2013, 135, 11115-11124.

26

Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C. -Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan, X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett. 2014, 14, 3887-3894.

27

Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H. Q.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 2015, 8, 350-363.

28

Song, Y. J.; Garcia, R. M.; Dorin, R. M.; Wang, H. R.; Qiu, Y.; Coker, E. N.; Steen, W. A.; Miller, J. E.; Shelnutt, J. A. Synthesis of platinum nanowire networks using a soft template. Nano Lett. 2007, 7, 3650-3655.

29

Teng, X. W.; Han, W. -Q.; Ku, W.; Hücker, M. Synthesis of ultrathin palladium and platinum nanowires and a study of their magnetic properties. Angew. Chem., Int. Ed. 2008, 47, 2055-2058.

30

Halder, A.; Ravishankar, N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 2007, 19, 1854-1858.

31

Koenigsmann, C.; Semple, D. B.; Sutter, E.; Tobierre, S. E.; Wong, S. S. Ambient synthesis of high-quality ruthenium nanowires and the morphology-dependent electrocatalytic performance of platinum-decorated ruthenium nanowires and nanoparticles in the methanol oxidation reaction. ACS Appl. Mater. Interfaces 2013, 5, 5518-5530.

32

Teng, X. W.; Feygenson, M.; Wang, Q.; He, J. Q.; Du, W. X.; Frenkel, A. I.; Han, W. Q.; Aronson, M. Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nano Lett. 2009, 9, 3177-3184.

33

Hong, X.; Tan, C.; Chen, J.; Xu, Z.; Zhang, H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Res. 2015, 8, 40-55.

34

Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041-2044.

35

Lu, X. M.; Yavuz, M. S.; Tuan, H.; Korgel, B. A.; Xia, Y. N. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 2008, 130, 8900-8901.

36

Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Fardy, M.; Yan, R. X.; Zhang, X. F.; Li, Y. D.; Yang, P. D. Self-organized ultrathin oxide nanocrystals. Nano Lett. 2009, 9, 1260-1264.

37

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59-61.

38

Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574-580.

39

Liu, L. P.; Zhuang, Z. B.; Xie, T.; Wang, Y. G.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 2009, 131, 16423-16429.

40

Xiong, Y. J.; Washio, I.; Chen, J. Y.; Cai, H. G.; Li, Z. Y.; Xia, Y. N. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 2006, 22, 8563-8570.

41

Ponrouch, A.; Garbarino, S.; Pronovost, S.; Taberna, P. -L.; Simon, P.; Guay, D. Electrodeposition of arrays of Ru, Pt, and PtRu alloy 1D metallic nanostructures. J. Electrochem. Soc. 2010, 157, K59-K65.

42

Zhang, Y. W.; Grass, M. E.; Kuhn, J. N.; Tao, F.; Habas, S. E.; Huang, W. Y.; Yang, P. D.; Somorjai, G. A. Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. J. Am. Chem. Soc. 2008, 130, 5868-5869.

43

Tsung, C. K.; Kuhn, J. N.; Huang, W. Y.; Aliaga, C.; Hung, L. I.; Somorjai, G. A.; Yang, P. D. Sub-10 nm platinum nanocrystals with size and shape control: Catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem. Soc. 2009, 131, 5816-5822.

44

Yuan, Q.; Zhuang, J.; Wang, X. Single-phase aqueous approach toward Pd sub-10 nm nanocubes and Pd-Pt heterostructured ultrathin nanowires. Chem. Commun. 2009, 6613-6615.

45

Huang, X. Q.; Zheng, N. F. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J. Am. Chem. Soc. 2009, 131, 4602-4603.

46

Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowire. Science 2002, 297, 237-240.

47

Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255-1259.

48

Häglund, J.; Fernández Guillermet, A.; Grimvall, G.; Körling, M. Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 1993, 48, 11685-11691.

49

Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767-3804.

50

Green, C. L.; Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. Phys. Chem. B 2002, 106, 1036-1047.

51

Jiang, J. H.; Kucernak, A. Mesoporous microspheres composed of PtRu alloy. Chem. Mater. 2004, 16, 1362-1367.

52

Herrero, E.; Franaszczuk, K.; Wieckowski, A. Electro chemistry of methanol at low index crystal planes of platinum: An integrated voltammetric and chronoamperometric study. Phys. Chem. 1994, 98, 5074-5083.

File
nr-9-10-3066_ESM.pdf (9.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 March 2016
Revised: 16 June 2016
Accepted: 18 June 2016
Published: 20 August 2016
Issue date: October 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21361005 and 21571038) and Graduate Innovation Foundation of Guizhou University (No. 2015031). The experimental work was mainly done in National University of Singapore and we also appreciate the useful discussion with Prof. Hua Chun Zeng of the National University of Singapore about this work.

Return