Journal Home > Volume 9 , Issue 10

Fast and uniform growth of high-quality graphene on conventional glass is of great importance for practical applications of graphene glass. We report herein a confined-flow chemical vapor deposition (CVD) approach for the high-efficiency fabrication of graphene glass. The key feature of our approach is the fabrication of a 2–4 μm wide gap above the glass substrate, with plenty of stumbling blocks; this gap was found to significantly increase the collision probability of the carbon precursors and reactive fragments between one another and with the glass surface. As a result, the growth rate of graphene glass increased remarkably, together with an improvement in the growth quality and uniformity as compared to those in the conventional gas flow CVD technique. These high-quality graphene glasses exhibited an excellent defogging performance with much higher defogging speed and higher stability compared to those previously reported. The graphene sapphire glass was found to be an ideal substrate for growing uniform and ultra-smooth aluminum nitride thin films without the tedious pre-deposition of a buffer layer. The presented confined-flow CVD approach offers a simple and low-cost route for the mass production of graphene glass, which is believed to promote the practical applications of various graphene glasses.

File
nr-9-10-3048_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 May 2016
Accepted: 23 June 2016
Published: 18 August 2016
Issue date: October 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was financially supported by the National Basic Research Program of China (Nos. 2016YFA0200103, 2013CB932603, 2012CB933404, and 2013CB934600), the National Natural Science Foundation of China (Nos. 51520105003 and 51432002), the Ministry of Education (No. 20120001130010), and the Beijing Municipal Science and Technology Planning Project (No. Z151100003315013).

Return