Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Safe fluorescent gene-transfection vectors are in great demand for basic biological applications and for gene-therapy research. Here, we introduce a new type of luminescent silicon nanoparticle (SiNP)-based gene carrier suitable for determining the intracellular fate of the gene vehicle in a long-term and real-time manner. The presented SiNP-based nanocarriers simultaneously feature strong and stable fluorescence, high DNA-loading capacity and gene-transfection efficiency, as well as favorable biocompatibility. Taking advantage of these unique benefits, we were able to readily observe the behavior of the gene carriers in live cells (e.g. cellular uptake, intracellular trafficking, and endosomal escape) in a long-term and real-time manner. The results demonstrate the potential usability of these fluorescent SiNP-based gene vectors as powerful tools in the field of gene therapy, and provide invaluable information for understanding the intracellular behavior of gene carriers.
McCormick, F. Cancer gene therapy: Fringe or cutting edge? Nat. Rev. Cancer 2001, 1, 130-141.
Opalinska, J. B.; Gewirtz, A. M. Nucleic-acid therapeutics: Basic principles and recent applications. Nat. Rev. Drug Discov. 2002, 1, 503-514.
Sokolova, V.; Epple, M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem., Int. Ed. 2008, 47, 1382-1395.
Yang, S. L.; Delgado, R.; King, S. R.; Woffendin, C.; Barker, C. S.; Yang, Z. Y.; Xu, L.; Nolan, G. P.; Nabel, G. J. Generation of retroviral vector for clinical studies using transient transfection. Hum. Gene Ther. 1999, 10, 123-132.
Bukovsky, A. A.; Song, J. P.; Naldini, L. Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J. Virol. 1999, 73, 7087-7092.
Tripathy, S. K.; Black, H. B.; Goldwasser, E.; Leiden, J. M. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat. Med. 1996, 2, 545-550.
Hendrie, P. C.; Russel, D. W. Gene targeting with viral vectors. Mol. Ther. 2005, 12, 9-17.
Glorioso, J. C.; DeLuca, N. A.; Fink, D. J. Development and application of herpes simplex virus vectors for human gene therapy. Annu. Rev. Microbiol. 1995, 49, 675-710.
Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297-7301.
Wagner, E.; Plank, C.; Zatloukal, K.; Cotton, M.; Birnstiel, M. L. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: Toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA 1992, 89, 7934-7938.
Thomas, C. E.; Ehrhardt, A.; Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346-358.
Lv, H. T.; Zhang, S. B.; Wang, B.; Cui, S. H.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 2006, 114, 100-109.
Muroski, M. E.; Morgan, T. J., Jr.; Levenson, C. W.; Strouse, G. F. A gold nanoparticle pentapeptide: Gene fusion to induce therapeutic gene expression in mesenchymal stem cells. J. Am. Chem. Soc. 2014, 136, 14763-14771.
McCully, M.; Hernandez, Y.; Conde, J.; Baptista, P. V.; de la Fuente, J. M.; Hursthouse, A.; Stirling, D.; Berry, C. C. Significance of the balance between intracellular glutathione and polyethylene glycol for successful release of small interfering RNA from gold nanoparticles. Nano Res. 2015, 8, 3281-3292.
Wang, X. L.; Zhou, L. Z.; Ma, Y. J.; Li, X.; Gu, H. C. Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection. Nano Res. 2009, 2, 365-372.
Ling, D. S.; Lee, N.; Hyeon, T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 2015, 48, 1276-1285.
Yu, M. H.; Niu, Y. T.; Zhang, J.; Zhang, H. W.; Yang, Y. N.; Taran, E.; Jambhrunkar, S.; Gu, W. Y.; Thorn, P.; Yu, C. Z. Size-dependent gene delivery of amine-modified silica nanoparticles. Nano Res. 2016, 9, 291-305.
Wu, M. Y.; Meng, Q. S.; Chen, Y.; Du, Y. Y.; Zhang, L. X.; Li, Y. P.; Zhang, L. L.; Shi, J. L. Large-pore ultrasmall mesoporous organosilica nanoparticles: Micelle/precursor co-templating assembly and nuclear-targeted gene delivery. Adv. Mater. 2015, 27, 215-222.
Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85-120.
Park, J.; Lee, J.; Kwag, J.; Baek, Y.; Kim, B.; Yoon, C. J.; Bok, S.; Cho, S. H.; Kim, K. H.; Ahn, G. O. et al. Quantum dots in an amphiphilic polyethyleneimine derivative platform for cellular labeling, targeting, gene delivery, and ratiometric oxygen sensing. ACS Nano 2015, 9, 6511-6521.
Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669-11717.
Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362-381.
Howes, P. D.; Chandrawati, R.; Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, DOI: 10.1126/science.1247390.
Peng, F.; Su, Y. Y.; Zhong, Y. L.; Fan, C. H.; Lee, S. T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 2014, 47, 612-623.
Song, S. P.; Qin, Y.; He, Y.; Huang, Q.; Fan, C. H.; Chen, H. Y. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev. 2010, 39, 4234-4243.
Cheng, X. Y.; Lowe, S. B.; Reece, P. J.; Gooding, J. J. Colloidal silicon quantum dots: From preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 2014, 43, 2680-2700.
Islam, M. A.; Purkait, T. K.; Veinot, J. G. C. Chloride surface terminated silicon nanocrystal mediated synthesis of poly(3-hexylthiophene). J. Am. Chem. Soc. 2014, 136, 15130-15133.
Dasog, M.; Kehrle, J.; Rieger, B.; Veinot, J. G. C. Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications. Angew. Chem., Int. Ed. 2016, 55, 2322-2339.
Zhong, Y. L.; Peng, F.; Bao, F.; Wang, S. Y.; Ji, X. Y.; Yang, L.; Su, Y. Y.; Lee, S. T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nano particles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350-8356.
Muzzarelli, R. A. A.; Tanfani, F.; Emanuelli, M.; Mariotti, S. N-(carboxymethylidene)chitosans and N-(carboxymethyl)chitosans: Novel chelating polyampholytes obtained from chitosan glyoxylate. Carbohydr. Res. 1982, 107, 199-214.
Thanou, M.; Nihot, M. T.; Jansen, M.; Verhoef, J. C.; Junginger, H. E. Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J. Pharm. Sci. 2001, 90, 38-46.
Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671-675.
Abràmoff, M. D.; Magalhães, P. J.; Ram, S. J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36-42.
He, Y.; Kang, Z. H.; Li, Q. S.; Tsang, C. H. A.; Fan, C. H.; Lee, S. T. Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew. Chem., Int. Ed. 2009, 48, 128-132.
He, Y.; Su, Y. Y.; Yang, X. B.; Kang, Z. H.; Xu, T. T.; Zhang, R. Q.; Fan, C. H.; Lee, S. T. Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J. Am. Chem. Soc. 2009, 131, 4434-4438.
Fischer, D.; Bieber, T.; Li, Y. X.; Elsässer, H. P.; Kissel, T. A novel nonviral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 1999, 16, 1273-1279.
Ji, X. Y.; Peng, F.; Zhong, Y. L.; Su, Y. Y.; Jiang, X. X.; Song, C. X.; Yang, L.; Chu, B. B.; Lee, S. T.; He, Y. Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy. Adv. Mater. 2015, 27, 1029-1034.
Zhu, J. M.; Tang, A.; Law, L. P.; Feng, M.; Ho, K. M.; Lee, D. K. L.; Harris, F. W.; Li, P. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjugate Chem. 2005, 16, 139-146.
Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581-593.
Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541-555.
Wu, X. A.; Choi, C. H. J.; Zhang, C.; Hao, L. L.; Mirkin, C. A. Intracellular fate of spherical nucleic acid nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7726-7733.
Leung, C. W. T.; Hong, Y.; Chen, S.; Zhao, E.; Lam, J. W. Y.; Tang, B. Z. A photostable AIE luminogen for specific mitochondrial imaging and tracking. J. Am. Chem. Soc. 2013, 135, 62-65.
Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 2009, 109, 259-302.