Journal Home > Volume 9 , Issue 10

The growing demand for portable electronic devices means that lightweight power sources are increasingly sought after. Electric double layer capacitors (EDLCs) are promising candidates for use in lightweight power sources due to their high power densities and outstanding charge/discharge cycling stabilities. Three-dimensional (3D) self-supporting carbon-based materials have been extensively studied for use in lightweight EDLCs. Yet, a major challenge for 3D carbon electrodes is the limited ion diffusion rate in their internal spaces. To address this limitation, hierarchically porous 3D structures that provide additional channels for internal ion diffusion have been proposed. Herein, we report a new chemical method for the synthesis of an ultralight (9.92 mg/cm3) 3D porous carbon foam (PCF) involving carbonization of a glutaraldehydecross-linked chitosan aerogel in the presence of potassium carbonate. Electron microscopy images reveal that the carbon foam is an interconnected network of carbon sheets containing uniformly dispersed macropores. In addition, Brunauer–Emmett–Teller measurements confirm the hierarchically porous structure. Electrochemical data show that the PCF electrode can achieve an outstanding gravimetric capacitance of 246.5 F/g at a current density of 0.5 A/g, and a remarkable capacity retention of 67.5% was observed when the current density was increased from 0.5 to 100 A/g. A quasi-solid-state symmetric supercapacitor was fabricated via assembly of two pieces of the new PCF and was found to deliver an ultra-high power density of 25 kW/kg at an energy density of 2.8 Wh/kg. This study demonstrates the synthesis of an ultralight and hierarchically porous carbon foam with high capacitive performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchically porous carbon foams for electric double layer capacitors

Show Author's information Feng Zhang1,2,§Tianyu Liu2,§Guihua Hou1Tianyi Kou2Lu Yue1Rongfeng Guan1Yat Li1( )
Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu ProvinceYancheng Institute of TechnologyYancheng224051China
Department of Chemistry and BiochemistryUniversity of CaliforniaSanta Cruz1156 High StreetSanta CruzCA95064USA

§ These authors contributed equally to this work.

Abstract

The growing demand for portable electronic devices means that lightweight power sources are increasingly sought after. Electric double layer capacitors (EDLCs) are promising candidates for use in lightweight power sources due to their high power densities and outstanding charge/discharge cycling stabilities. Three-dimensional (3D) self-supporting carbon-based materials have been extensively studied for use in lightweight EDLCs. Yet, a major challenge for 3D carbon electrodes is the limited ion diffusion rate in their internal spaces. To address this limitation, hierarchically porous 3D structures that provide additional channels for internal ion diffusion have been proposed. Herein, we report a new chemical method for the synthesis of an ultralight (9.92 mg/cm3) 3D porous carbon foam (PCF) involving carbonization of a glutaraldehydecross-linked chitosan aerogel in the presence of potassium carbonate. Electron microscopy images reveal that the carbon foam is an interconnected network of carbon sheets containing uniformly dispersed macropores. In addition, Brunauer–Emmett–Teller measurements confirm the hierarchically porous structure. Electrochemical data show that the PCF electrode can achieve an outstanding gravimetric capacitance of 246.5 F/g at a current density of 0.5 A/g, and a remarkable capacity retention of 67.5% was observed when the current density was increased from 0.5 to 100 A/g. A quasi-solid-state symmetric supercapacitor was fabricated via assembly of two pieces of the new PCF and was found to deliver an ultra-high power density of 25 kW/kg at an energy density of 2.8 Wh/kg. This study demonstrates the synthesis of an ultralight and hierarchically porous carbon foam with high capacitive performance.

Keywords: hierarchically porous structure, glutaraldehyde-crosslinked chitosan, light weight, carbon foam, electrical double layer capacitors

References(72)

1

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.

2

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, DOI: 10.1126/science.1246501.

3

Zhai, T.; Lu, X. H.; Wang, H. Y.; Wang, G. M.; Mathis, T.; Liu, T. Y.; Li, C.; Tong, Y. X.; Li, Y. An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg. Nano Lett. 2015, 15, 3189-3194.

4

Chabi, S.; Peng, C.; Hu, D.; Zhu, Y. Q. Ideal three- dimensional electrode structures for electrochemical energy storage. Adv. Mater. 2014, 26, 2440-2445.

5

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042-4049.

6

Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled three- dimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666-1675.

7

Ruiz, V.; Blanco, C.; Santamaría, R.; Ramos-Fernández, J. M.; Martínez-Escandell, M.; Sepúlveda-Escribano, A.; Rodríguez- Reinoso, F. An activated carbon monolith as an electrode material for supercapacitors. Carbon 2009, 47, 195-200.

8

Yang, Y. B.; Li, P. X.; Wu, S. T.; Li, X. Y.; Shi, E. Z.; Shen, Q. C.; Wu, D. H.; Xu, W. J.; Cao, A. Y.; Yuan, Q. Hierarchically designed three-dimensional macro/mesoporous carbon frameworks for advanced electrochemical capacitance storage. Chem. -Eur. J. 2015, 21, 6157-6164.

9

Cheng, Y. L.; Huang, L.; Xiao, X.; Yao, B.; Yuan, L. Y.; Li, T. Q.; Hu, Z. M.; Wang, B.; Wan, J.; Zhou, J. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 2015, 15, 66-74.

10

Niu, Z. Q.; Zhou, W. Y.; Chen, J.; Feng, G. X.; Li, H.; Ma, W. J.; Li, J. Z.; Dong, H. B.; Ren, Y.; Zhao, D. et al. Compact-designed supercapacitors using free-standing single- walled carbon nanotube films. Energy Environ. Sci. 2011, 4, 1440-1446.

11

Sun, Y. M.; Sills, R. B.; Hu, X. L.; Seh, Z. W.; Xiao, X.; Xu, H. H.; Luo, W.; Jin, H. Y.; Xin, Y.; Li, T. Q. et al. A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett. 2015, 15, 3899-3906.

12

Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.

13

Chen, Z.; Wen, J.; Yan, C. Z.; Rice, L.; Sohn, H.; Shen, M. Q.; Cai, M. Q.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on hierarchically porous graphite particles. Adv. Energy Mater. 2011, 1, 551-556.

14

Dutta, S.; Bhaumik, A.; Wu, K. C. -W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574-3592.

15

Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219-2251.

16

Zhang, L. L.; Gu, Y.; Zhao, X. S. Advanced porous carbon electrodes for electrochemical capacitors. J. Mater. Chem. A 2013, 1, 9395-9408.

17

Xu, Y. X.; Chen, C. -Y.; Zhao, Z. P.; Lin, Z. Y.; Lee, C.; Xu, X.; Wang, C.; Huang, Y.; Shakir, M. I.; Duan, X. F. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 2015, 15, 4605-4610.

18

Hao, P.; Zhao, Z. H.; Tian, J.; Li, H. D.; Sang, Y. H.; Yu, G. W.; Cai, H. Q.; Liu, H.; Wong, C. P.; Umar, A. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 2014, 6, 12120-12129.

19

White, R. J.; Budarin, V.; Luque, R.; Clark, J. H.; Macquarrie, D. J. Tuneable porous carbonaceous materials from renewable resources. Chem. Soc. Rev. 2009, 38, 3401-3418.

20

White, R. J.; Brun, N.; Budarin, V. L.; Clark, J. H.; Titirici, M. -M. Always look on the "Light" side of life: Sustainable carbon aerogels. ChemSusChem 2014, 7, 670-689.

21

Primo, A.; Atienzar, P.; Sanchez, E.; Delgado, J. M.; García, H. From biomass wastes to large-area, high-quality, N-doped graphene: Catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem. Commun. 2012, 48, 9254-9256.

22

Hao, P.; Zhao, Z. H.; Leng, Y. H.; Tian, J.; Sang, Y. H.; Boughton, R. I.; Wong, C. P.; Liu, H.; Yang, B. Graphene- based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 2015, 15, 9-23.

23

Latorre-Sánchez, M.; Primo, A.; Atienzar, P.; Forneli, A.; García, H. p-n heterojunction of doped graphene films obtained by pyrolysis of biomass precursors. Small 2015, 11, 970-975.

24

Primo, A.; Sánchez, E.; Delgado, J. M.; García, H. High- yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon 2014, 68, 777-783.

25

Kucinska, A.; Cyganiuk, A.; Lukaszewicz, J. P. A microporous and high surface area active carbon obtained by the heat- treatment of chitosan. Carbon 2012, 50, 3098-3101.

26

Olejniczak, A.; Lezanska, M.; Wloch, J.; Kucinska, A.; Lukaszewicz, J. P. Novel nitrogen-containing mesoporous carbons prepared from chitosan. J. Mater. Chem. A 2013, 1, 8961-8967.

27

Zhao, Q. L.; Wang, X. Y.; Liu, J.; Wang, H.; Zhang, Y. W.; Gao, J.; Lu, Q.; Zhou, H. Y. Design and synthesis of three- dimensional hierarchical ordered porous carbons for supercapacitors. Electrochim. Acta 2015, 154, 110-118.

28

Zhao, C. T.; Yu, C.; Liu, S. H.; Yang, J.; Fan, X. M.; Huang, H. W.; Qiu, J. S. 3D porous n-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries. Adv. Funct. Mater. 2015, 25, 6913-6920.

29

Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537-1541.

30

Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y. W.; Shen, M. Q.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 2011, 23, 791-795.

31

He, P. G.; Liu, L.; Song, W. X.; Xiong, G. P.; Fisher, T. S.; Chen, T. F. Large-scale synthesis and activation of polygonal carbon nanofibers with thin ribbon-like structures for supercapacitor electrodes. RSC Adv. 2015, 5, 31837-31844.

32

Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676-2682.

33

Pham, D. T.; Lee, T. H.; Luong, D. H.; Yao, F.; Ghosh, A.; Le, V. T.; Kim, T. H.; Li, B.; Chang, J.; Lee, Y. H. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 2015, 9, 2018-2027.

34

Kim, S. J.; Hwang, S. W.; Hyun, S. H. Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 2005, 40, 725-731.

35

Song, W. -L.; Guan, X. -T.; Fan, L. -Z.; Cao, W. -Q.; Wang, C. -Y.; Cao, M. -S. Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon 2015, 93, 151-160.

36

Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494-6497.

37

Qie, L.; Chen, W. M.; Xu, H. H.; Xiong, X. Q.; Jiang, Y.; Zou, F.; Hu, X. L.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2497-2504.

38

Wu, X. L.; Jiang, L. L.; Long, C. L.; Fan, Z. J. From flour to honeycomb-like carbon foam: Carbon makes room for high energy density supercapacitors. Nano Energy 2015, 13, 527-536.

39

Wang, J. C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710-23725.

40

Ling, Z.; Yu, C.; Fan, X. M.; Liu, S. H.; Yang, J.; Zhang, M. D.; Wang, G.; Xiao, N.; Qiu, J. S. Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance. Nanotechnology 2015, 26, 374003.

41

Xu, J. D.; Gao, Q. M.; Zhang, Y. L.; Tan, Y. L.; Tian, W. Q.; Zhu, L. H.; Jiang, L. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Sci. Rep. 2014, 4, 5545.

42

Horikawa, T.; Hayashi, J. I.; Muroyama, K. Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin. Carbon 2004, 42, 169-175.

43

Liu, R. L.; Wan, L.; Liu, S. Q.; Pan, L. X.; Wu, D. Q.; Zhao, D. Y. An interface-induced Co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high- performance supercapacitors. Adv. Funct. Mater. 2015, 25, 526-533.

44

Ghosh, A.; Lee, Y. H. Carbon-based electrochemical capacitors. ChemSusChem 2012, 5, 480-499.

45

Song, Y.; Feng, D. Y.; Liu, T. Y.; Li, Y.; Liu, X. X. Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors. Nanoscale 2015, 7, 3581-3587.

46

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.

47

Yang, P. H.; Mai, W. J. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274-290.

48

Bo, Z.; Zhu, W. G.; Ma, W.; Wen, Z. H.; Shuai, X. R.; Chen, J. H.; Yan, J. H.; Wang, Z. H.; Cen, K. F.; Feng, X. L. Vertically oriented graphene bridging active-layer/current- collector interface for ultrahigh rate supercapacitors. Adv. Mater. 2013, 25, 5799-5806.

49

Li, J.; Wang, X. Y.; Huang, Q. H.; Gamboa, S.; Sebastian, P. J. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J. Power Sources 2006, 158, 784-788.

50

Yu, Z. N.; McInnis, M.; Calderon, J.; Seal, S.; Zhai, L.; Thomas, J. Functionalized graphene aerogel composites for high-performance asymmetric supercapacitors. Nano Energy 2015, 11, 611-620.

51

Wu, Z. -S.; Sun, Y.; Tan, Y. -Z.; Yang, S. B.; Feng, X. L.; Müllen, K. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 2012, 134, 19532-19535.

52

Feng, D.; Lv, Y. Y.; Wu, Z. X.; Dou, Y. Q.; Han, L.; Sun, Z. K.; Xia, Y. Y.; Zheng, G. F.; Zhao, D. Y. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J. Am. Chem. Soc. 2011, 133, 15148-15156.

53

Chen, H. Y.; Di, J. T.; Jin, Y.; Chen, M. H.; Tian, J.; Li, Q. W. Active carbon wrapped carbon nanotube buckypaper for the electrode of electrochemical supercapacitors. J. Power Sources 2013, 237, 325-331.

54

Li, Z. H.; Wu, D. C.; Liang, Y. R.; Fu, R. W.; Matyjaszewski, K. Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. J. Am. Chem. Soc. 2014, 136, 4805-4808.

55

Ma, Z. H.; Zhao, X. W.; Gong, C. H.; Zhang, J. W.; Zhang, J. W.; Gu, X. F.; Tong, L.; Zhou, J. F.; Zhang, Z. J. Preparation of a graphene-based composite aerogel and the effects of carbon nanotubes on preserving the porous structure of the aerogel and improving its capacitor performance. J. Mater. Chem. A 2015, 3, 13445-13452.

56

Sui, Z. -Y.; Meng, Y. -N.; Xiao, P. -W.; Zhao, Z. -Q.; Wei, Z. -X.; Han, B. -H. Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl. Mater. Interfaces 2015, 7, 1431-1438.

57

Song, W. -L.; Song, K.; Fan, L. -Z. A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 4257-4264.

58

Pröbstle, H.; Wiener, M.; Fricke, J. Carbon aerogels for electrochemical double layer capacitors. J. Porous Mater. 2003, 10, 213-222.

59

Liu, M. -C.; Kong, L. -B.; Zhang, P.; Luo, Y. -C.; Kang, L. Porous wood carbon monolith for high-performance supercapacitors. Electrochim. Acta 2012, 60, 443-448.

60

Liu, M. -C.; Kong, L. -B.; Lu, C.; Li, X. -M.; Luo, Y. -C.; Kang, L. Waste paper based activated carbon monolith as electrode materials for high performance electric double- layer capacitors. RSC Adv. 2012, 2, 1890-1896.

61

Liu, T. Y.; Ling, Y. C.; Yang, Y.; Finn, L.; Collazo, E.; Zhai, T.; Tong, Y. X.; Li, Y. Investigation of hematite nanorod-nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices. Nano Energy 2015, 12, 169-177.

62

Weng, Z.; Su, Y.; Wang, D. -W.; Li, F.; Du, J. H.; Cheng, H. -M. Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 2011, 1, 917-922.

63

Wang, H. L.; Li, Z.; Tak, J. K.; Holt, C. M. B.; Tan, X. H.; Xu, Z. W.; Amirkhiz, B. S.; Harfield, D.; Anyia, A.; Stephenson, T. et al. Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste. Carbon 2013, 57, 317-328.

64

Zhai, T.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Wang, G. M.; Liu, T. Y.; Liang, C. L.; Tong, Y. X.; Li, Y. A new benchmark capacitance for supercapacitor anodes by mixed- valence sulfur-doped V6O13-x. Adv. Mater. 2014, 26, 5869- 5875.

65

Portet, C.; Yushin, G.; Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 2007, 45, 2511-2518.

66

Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 2013, 7, 7975-7982.

67

Qu, D. Y.; Shi, H. Studies of activated carbons used in double-layer capacitors. J. Power Sources 1998, 74, 99-107.

68

Zhao, Z. H.; Hao, S. M.; Hao, P.; Sang, Y. H.; Manivannan, A.; Wu, N. Q.; Liu, H. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J. Mater. Chem. A 2015, 3, 15049-15056.

69

Zheng, H. M.; Zhai, T.; Yu, M. H.; Xie, S. L.; Liang, C. L.; Zhao, W. X.; Wang, S. C. I.; Zhang, Z. S.; Lu, X. H. TiO2@C core-shell nanowires for high-performance and flexible solid-state supercapacitors. J. Mater. Chem. C 2013, 1, 225-229.

70

Yang, P. H.; Xiao, X.; Li, Y. Z.; Ding, Y.; Qiang, P. F.; Tan, X. H.; Mai, W. J.; Lin, Z. Y.; Wu, W. Z.; Li, T. Q. et al. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617-2626.

71

Lu, X. H.; Wang, G. M.; Zhai, T.; Yu, M. H.; Xie, S. L.; Ling, Y. C.; Liang, C. L.; Tong, Y. X.; Li, Y. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 2012, 12, 5376-5381.

72

Choi, B. G.; Chang, S. -J.; Kang, H. -W.; Park, C. P.; Kim, H. J.; Hong, W. H.; Lee, S.; Huh, Y. S. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 2012, 4, 4983-4988.

File
nr-9-10-2875_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 April 2016
Revised: 04 June 2016
Accepted: 07 June 2016
Published: 09 July 2016
Issue date: October 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by Jiangsu Government Scholarship for overseas studies, National Nature Science Foundation of China (Nos. 11204266 and 21276220), and Nature Science Foundation of Jiangsu Province (Nos. BK20141262 and BK20140463). The authors thank Dr. Tom Yuzvinsky from University of California, Santa Cruz for SEM images acquisition and acknowledge the W. M. Keck Center for Nanoscale Opto-fluidics for use of the FEI Quanta 3D Dual-beam scanning electron microscope. The authors also acknowledge Prof. Zhonghua Zhang from Shandong University for his help with BET characterization, Prof. Jin Z. Zhang from University of California, Santa Cruz, for offering the access to Reinshaw Raman spectrometer, Mr. Fuxin Wang from Sun Yat-sen University for TEM characterization, Prof. Xiaoxia Liu and Mr. Yu Song from Northeastern University for their generous help with AFM characterization.

Return