Journal Home > Volume 9 , Issue 10

The catalytic activity of materials is highly dependent on their composition and surface structure, especially the density of low-coordinated surface atoms. In this work, we have prepared two-dimensional hexagonal FeS with high-energy (001) facets (FeS-HE-001) via a solution-phase chemical method. Nanosheets (NSs) with exposed high-energy planes usually possess better reaction activity, so FeS-HE-001 was used as a counter electrode (CE) material for dye-sensitized solar cells (DSSCs). FeS-HE-001 achieved an average power conversion efficiency (PCE) of 8.88% (with the PCE of champion cells being 9.10%), which was almost 1.15 times higher than that of the Pt-based DSSCs (7.73%) measured in parallel. Cyclic voltammetry and Tafel polarization measurements revealed the excellent electrocatalytic activities of FeS-HE-001 towards the I 3/I redox reaction. This can be attributed to the promotion of photoelectron transfer, which was measured by electrochemical impedance spectroscopy and scanning Kelvin probe, and the strong I 3 adsorption and reduction activities, which were investigated using first-principles calculations. The presence of high-energy (001) facets in the NSs was an important factor for improving the catalytic reduction of I 3. We believe that our method is a promising way for the design and synthesis of advanced CE materials for energy harvesting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hexagonal FeS nanosheets with high-energy (001) facets: Counter electrode materials superior to platinum for dye-sensitized solar cells

Show Author's information Xiuwen Wang1Ying Xie1Buhe Bateer1,2Kai Pan1( )Yangtao Zhou1Yi Zhang1Guofeng Wang1Wei Zhou1Honggang Fu1( )
Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaHeilongjiang UniversityHarbin150080China
College of Materials and Chemical EngineeringHeilongjiang Institute of TechnologyHarbin150050China

Abstract

The catalytic activity of materials is highly dependent on their composition and surface structure, especially the density of low-coordinated surface atoms. In this work, we have prepared two-dimensional hexagonal FeS with high-energy (001) facets (FeS-HE-001) via a solution-phase chemical method. Nanosheets (NSs) with exposed high-energy planes usually possess better reaction activity, so FeS-HE-001 was used as a counter electrode (CE) material for dye-sensitized solar cells (DSSCs). FeS-HE-001 achieved an average power conversion efficiency (PCE) of 8.88% (with the PCE of champion cells being 9.10%), which was almost 1.15 times higher than that of the Pt-based DSSCs (7.73%) measured in parallel. Cyclic voltammetry and Tafel polarization measurements revealed the excellent electrocatalytic activities of FeS-HE-001 towards the I 3/I redox reaction. This can be attributed to the promotion of photoelectron transfer, which was measured by electrochemical impedance spectroscopy and scanning Kelvin probe, and the strong I 3 adsorption and reduction activities, which were investigated using first-principles calculations. The presence of high-energy (001) facets in the NSs was an important factor for improving the catalytic reduction of I 3. We believe that our method is a promising way for the design and synthesis of advanced CE materials for energy harvesting.

Keywords: catalytic reduction, FeS nanosheets, high-energy facets, counter electrode, first-principles calculation

References(50)

1

O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.

2

Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.

3

Wang, M. K.; Chamberland, N.; Breau, L.; Moser, J. -E.; Humphry-Baker, R.; Marsan, B.; Zakeeruddin, S. M.; Grätzel, M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2010, 2, 385-389.

4

Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595-6663.

5

Peng, S. J.; Shi, J. F.; Pei, J.; Liang, Y. L.; Cheng, F. Y.; Liang, J.; Chen, J. Ni1-xPtx (x = 0-0.08) films as the photocathode of dye-sensitized solar cells with high efficiency. Nano Res. 2009, 2, 484-492.

6

Dao, V. -D.; Kim, S. -H.; Choi, H. -S.; Kim, J. -H.; Park, H. -O.; Lee, J. -K. Efficiency enhancement of dye-sensitized solar cell using Pt hollow sphere counter electrode. J. Phys. Chem. C 2011, 115, 25529-25534.

7

Yu, C.; Fang, H. Q.; Liu, Z. Q.; Hu, H.; Meng, X. T.; Qiu, J. S. Chemically grafting graphene oxide to B, N co-doped graphene via ionic liquid and their superior performance for triiodide reduction. Nano Energy 2016, 25, 184-192.

8

Meng, X. T.; Yu, C.; Song, X. D.; Liu, Y.; Liang, S. X.; Liu, Z. Q.; Hao, C.; Qiu, J. S. Nitrogen-doped graphene nanoribbons with surface enriched active sites and enhanced performance for dye-sensitized solar cells. Adv. Energy Mater. 2015, 5, 1500180.

9

Li, G. R.; Song, J.; Pan, G. L.; Gao, X. P. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1680-1683.

10

Wu, M. X.; Guo, H. Y.; Lin, Y. N.; Wu, K. Z.; Ma, T. L.; Hagfeldt, A. Synthesis of highly effective vanadium nitride (VN) peas as a counter electrode catalyst in dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 12625-12631.

11

Liao, Y. P.; Xie, Y.; Pan, K.; Wang, G. F.; Pan, Q. J.; Zhou, W.; Wang, L.; Jiang, B. J.; Fu, H. G. Fe3W3C/WC/graphitic carbon ternary nanojunction hybrids for dye-sensitized solar cells. ChemSusChem 2015, 8, 726-733.

12

Yun, S. N.; Hagfeldt, A.; Ma, T. L. Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv. Mater. 2014, 26, 6210-6237.

13

Yu, C.; Liu, Z. Q.; Chen, Y. W.; Meng, X. T.; Li, M. Y.; Qiu, J. S. CoS nanosheets-coupled graphene quantum dots architectures as a binder-free counter electrode for high-performance DSSCs. Sci. China Mater. 2016, 59, 104-111.

14

Huang, N.; Zhang, S. Z.; Huang, H.; Liu, J. W.; Sun, Y. H.; Sun, P. P.; Bao, C.; Zheng, L. J.; Sun, X. H.; Zhao, X. Z. Pt-sputtering-like NiCo2S4 counter electrode for efficient dye-sensitized solar cells. Electrochim. Acta 2016, 192, 521-528.

15

Meng, X. T.; Yu, C.; Lu, B.; Yang, J.; Qiu J. S. Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells. Nano Energy 2016, 22, 59-69.

16

Wang, X. W.; Batter, B.; Xie, Y.; Pan, K.; Liao, Y. P.; Lv, C. M.; Li, M. X.; Sui, S. Y.; Fu, H. G. Highly crystalline, small sized, monodisperse α-NiS nanocrystal ink as an efficient counter electrode for dye-sensitized solar cells. J. Mater. Chem. A 2015, 3, 15905-15912.

17

Xin, X. K.; He, M.; Han, W.; Jung, J.; Lin, Z. Q. Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew. Chem., Int. Ed. 2011, 50, 11739-11742.

18

Yu, C.; Meng, X. T.; Song, X. D.; Liang, S. X.; Dong, Q.; Wang, G.; Hao, C.; Yang, X. C.; Ma, T. L.; Ajayan, P. M. et al. Graphene-mediated highly-dispersed MoS2 nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells. Carbon 2016, 100, 474-483.

19

Ramasamy, K.; Malik, M. A.; Revaprasadu, N.; O'Brien, P. Routes to nanostructured inorganic materials with potential for solar energy applications. Chem. Mater. 2013, 25, 3551-3569.

20

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-735.

21

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638-641.

22

Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343-1348.

23

Wang, Y. -C.; Wang, D. -Y.; Jiang, Y. -T.; Chen, H. -A.; Chen, C. -C.; Ho, K. -C.; Chou, H. -L.; Chen, C. -W. FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2013, 52, 6694-6698.

24

Hu, Y.; Zheng, Z.; Jia, H. M.; Tang, Y. W.; Zhang, L. Z. Selective synthesis of FeS and FeS2 nanosheet films on iron substrates as novel photocathodes for tandem dye-sensitized solar cells. J. Phys. Chem. C 2008, 112, 13037-13042.

25

Vanitha, P. V.; O'Brien, P. Phase control in the synthesis of magnetic iron sulfide nanocrystals from a cubane-type Fe-S cluster. J. Am. Chem. Soc. 2008, 130, 17256-17257.

26

Nath, M.; Choudhury, A.; Kundu, A.; Rao, C. N. R. Synthesis and characterization of magnetic iron sulfide nanowires. Adv. Mater. 2003, 15, 2098-2101.

27

Han, W.; Gao, M. Y. Investigations on iron sulfide nanosheets prepared via a single-source precursor approach. Cryst. Growth Des. 2008, 8, 1023-1030.

28

Zhang, Y. J.; Du, Y. P.; Xu, H. R.; Wang, Q. B. Diverse-shaped iron sulfide nanostructures synthesized from a single source precursor approach. CrystEngComm 2010, 12, 3658-3663.

29

Huang, S. S.; He, Q. Q.; Chen, W. L.; Qiao, Q. Q.; Zai, J. T.; Qian, X. F. Ultrathin FeSe2 nanosheets: Controlled synthesis and application as a heterogeneous catalyst in dye-sensitized solar cells. Chem. -Eur. J. 2015, 21, 4085-4091.

30

Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713-725.

31

Somorjai, G. A.; Blakely, D. W. Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature 1975, 258, 580-583.

32

Sun, S. G.; Chen, A. -C.; Huang, T. -S.; Li, J. -B.; Tian, Z. -W. Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single crystal electrodes towards ethylene glycol oxidation in sulphuric acid solutions. J. Electroanal. Chem. 1992, 340, 213-226.

33

Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2009, 131, 16350-16351.

34

Biegler, T.; Rand, D. A. J.; Woods, R. Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption. J. Electroanal. Chem. Interfacial Electrochem. 1971, 29, 269-277.

35

Tian, N.; Zhou, Z. Y.; Sun, S. G. Electrochemical preparation of Pd nanorods with high-index facets. Chem. Commun. 2009, 1502-1504.

36

Xu, C.; Zeng, Y.; Rui, X. H.; Xiao, N.; Zhu, J. X.; Zhang, W. Y.; Chen, J.; Liu, W. L.; Tan, H. T.; Hng, H. H. et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 2012, 6, 4713-4721.

37

Hagfeldt, A.; Grätzel, M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33, 269-277.

38

Miao, X. H.; Pan, K.; Wang, G. F.; Liao, Y. P.; Wang, L.; Zhou, W.; Jiang, B. J.; Pan, Q. J.; Tian, G. H. Well-dispersed CoS nanoparticles on a functionalized graphene nanosheet surface: A counter electrode of dye-sensitized solar cells. Chem. -Eur. J. 2014, 20, 474-482.

39

Li, Y. H.; Zhang, J. P.; Yang, F. M.; Liang, J.; Sun, H.; Tang, S. W.; Wang, R. S. Morphology and surface properties of LiVOPO4: A first principles study. Phys. Chem. Chem. Phys. 2014, 16, 24604-24609.

40

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671-6687.

41

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

42

Fischer, T. H.; Almlof, J. General methods for geometry and wave function optimization. J. Phys. Chem. 1992, 96, 9768-9774.

43

Ganapathy, S.; Wagemaker, M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. ACS Nano 2012, 6, 8702-8712.

44

Jiang, F.; Peckler, L. T.; Muscat, A. J. Phase pure pyrite FeS2 nanocubes synthesized using oleylamine as ligand, solvent, and reductant. Cryst. Growth Des. 2015, 15, 3565-3572.

45

Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H. -M. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559-9612.

46

Ho, C. -H.; Tsai, C. -P.; Chung, C. -C.; Tsai, C. -Y.; Chen, F. -R.; Lin, H. -J.; Lai, C. -H. Shape-controlled growth and shape-dependent cation site occupancy of monodisperse Fe3O4 nanoparticles. Chem. Mater. 2011, 23, 1753-1760.

47

Wang, H. P.; Salveson, I. A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1-xS (0≤x≤0.125): Polymorphs, phase relations and transitions, electronic and magnetic structures. Phase Transitions 2005, 78, 547-567.

48

Wu, M. X.; Lin, X.; Wang, Y. D.; Wang, L.; Guo, W.; Qi, D. D.; Peng, X. J.; Hagfeldt, A.; Grätzel, M.; Ma, T. L. Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. J. Am. Chem. Soc. 2012, 134, 3419-3428.

49

Cheran, L. -E.; Sadeghi, S.; Thompson, M. Scanning kelvin nanoprobe detection in materials science and biochemical analysis. Analyst 2005, 130, 1569-1576.

50

Wang, R. H.; Xie, Y.; Shi, K. Y.; Wang, J. Q.; Tian, C. G.; Shen, P. K.; Fu, H. G. Small-sized and contacting Pt-WC nanostructures on graphene as highly efficient anode catalysts for direct methanol fuel cells. Chem. -Eur. J. 2012, 18, 7443-7451.

File
nr-9-10-2862_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 April 2016
Revised: 02 June 2016
Accepted: 07 June 2016
Published: 08 July 2016
Issue date: October 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We gratefully acknowledge the support of this research by the National Natural Science Foundation of China (Nos. 21473051 and 21371053), Application Technology Research and Development Projects in Harbin (No. 2013AE4BW051) and International Science & Technology Cooperation Program of China (No. 2014DFR41110).

Return