Journal Home > Volume 9 , Issue 9

High-quality single-layered and bilayered graphene (SLG and BLG) was synthesized on copper foil surfaces by controllable chemical vapor deposition (CVD). Impurity nanoparticles formed on the copper foil surface by hightemperature annealing were found to play a crucial role in the growth of BLG. Analysis of energy-dispersive spectrometry (EDS) data indicated that these nanoparticles consisted of silicon and aluminum. According to the inverted wedding cake model, these nanoparticles served as nucleation centers for BLG growth and the free space between a nanoparticle and graphene served as the center of C injection for the continuous growth of the adlayer beneath the top layer. By combining phase-field theory simulations, we confirmed the mechanism of BLG growth and revealed more details about it in comparison with SLG growth. For the first time, this study led to a complete understanding of the BLG growth mechanism from nucleation to continuous growth in the CVD process, and it has opened a door to the thickness-controllable synthesis of graphene.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Impurity-induced formation of bilayered graphene on copper by chemical vapor deposition

Show Author's information Jun Li1,2Jianing Zhuang3Chengmin Shen1,4( )Yuan Tian1Yande Que1,2Ruisong Ma1,2Jinbo Pan1,2Yanfang Zhang1,2Yeliang Wang1,4Shixuan Du1,4Feng Ding3( )Hong-Jun Gao1,4( )
Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
University of Chinese Academy of SciencesBeijing100049China
Institute of Textiles and ClothingHong Kong Polytechnic UniversityKowloon, Hong KongChina
Beijing Key Laboratory for Nanomaterials and NanodevicesBeijing100190China

Abstract

High-quality single-layered and bilayered graphene (SLG and BLG) was synthesized on copper foil surfaces by controllable chemical vapor deposition (CVD). Impurity nanoparticles formed on the copper foil surface by hightemperature annealing were found to play a crucial role in the growth of BLG. Analysis of energy-dispersive spectrometry (EDS) data indicated that these nanoparticles consisted of silicon and aluminum. According to the inverted wedding cake model, these nanoparticles served as nucleation centers for BLG growth and the free space between a nanoparticle and graphene served as the center of C injection for the continuous growth of the adlayer beneath the top layer. By combining phase-field theory simulations, we confirmed the mechanism of BLG growth and revealed more details about it in comparison with SLG growth. For the first time, this study led to a complete understanding of the BLG growth mechanism from nucleation to continuous growth in the CVD process, and it has opened a door to the thickness-controllable synthesis of graphene.

Keywords: growth mechanism, graphene, chemical vapor deposition (CVD), bilayer

References(23)

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

3

Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

4

Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 2010, 6, 30–33.

5

Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.

6

Zhang, Y. B.; Tang, T. -T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820–823.

7

Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; Lopes dos Santos, J. M. B.; Nilsson, J.; Guinea, F.; Geim, A. K.; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.

8

McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 2006, 74, 161403.

9

Xia, F. N.; Farmer, D. B.; Lin, Y. -M.; Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010, 10, 715–718.

10

Lee, S.; Lee, K.; Zhong, Z. H. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 2010, 10, 4702–4707.

11

Wu, Y. P.; Chou, H.; Ji, H. X.; Wu, Q. Z.; Chen, S. S.; Jiang, W.; Hao, Y. F.; Kang, J. Y.; Ren, Y. J.; Piner, R. D. et al. Growth mechanism and controlled synthesis of ABstacked bilayer graphene on Cu–Ni alloy foils. ACS Nano 2012, 6, 7731–7738.

12

Nie, S.; Wu, W.; Xing, S. R.; Yu, Q. K.; Bao, J. M.; Pei, S. -S.; McCarty, K. F. Growth from below: Bilayer graphene on copper by chemical vapor deposition. New J. Phys. 2012, 14, 093028.

13

Fang, W. J.; Hsu, A. L.; Caudillo, R.; Song, Y.; Birdwell, A. G.; Zakar, E.; Kalbac, M.; Dubey, M.; Palacios, T.; Dresselhaus, M. S. et al. Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy. Nano Lett. 2013, 13, 1541–1548.

14

Li, Q. Y.; Chou, H.; Zhong, J. -H.; Liu, J. -Y.; Dolocan, A.; Zhang, J. Y.; Zhou, Y. H.; Ruoff, R. S.; Chen, S. S.; Cai, W. W. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 2013, 13, 486–490.

15

Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 2011, 49, 4122–4130.

16

Wang, Z. -J.; Weinberg, G.; Zhang, Q.; Lunkenbein, T.; Klein-Hoffmann, A.; Kurnatowska, M.; Plodinec, M.; Li, Q.; Chi, L. F.; Schloegl, R. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 2015, 9, 1506–1519.

17

Vlassiouk, I.; Regmi, M.; Fulvio, P. F.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069–6076.

18

Zhang, Y.; Zhang, L. Y.; Kim, P.; Ge, M. Y.; Li, Z.; Zhou, C. W. Vapor trapping growth of single-crystalline graphene flowers: Synthesis, morphology, and electronic properties. Nano Lett. 2012, 12, 2810–2816.

19

Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011, 11, 4547–4554.

20

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

21

Wu, B.; Geng, D. C.; Guo, Y. L.; Huang, L. P.; Xue, Y. Z.; Zheng, J.; Chen, J. Y.; Yu, G.; Liu, Y. Q.; Jiang, L. et al. Equiangular hexagon-shape-controlled synthesis of graphene on copper surface. Adv. Mater. 2011, 23, 3522–3525.

22

Yang, F.; Liu, Y. Q.; Wu, W.; Chen, W.; Gao, L.; Sun, J. A facile method to observe graphene growth on copper foil. Nanotechnology 2012, 23, 475705.

23

Shu, H. B.; Chen, X. S.; Ding, F. The edge termination controlled kinetics in graphene chemical vapor deposition growth. Chem. Sci. 2014, 5, 4639–4645.

File
nr-9-9-2803_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 April 2016
Accepted: 02 June 2016
Published: 20 July 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CBA01603), the National Natural Science Foundation of China (No. 61335006), and Chinese Academy of Sciences (Nos. 1731300500015 and XDB07030100).

Return