Journal Home > Volume 9 , Issue 9

Oxidation plays a tremendous role in the long-term performance of metals. As an important lightweight metal for industrial applications, magnesium suffers from its high reactivity with oxygen and increased evaporation at high temperatures. To understand the oxidation mechanism of magnesium at elevated temperatures, in situ environmental transmission electron microscopy (E-TEM) was performed on magnesium nanoparticles. At a relatively low temperature, the growth of a MgO lamellae via the outward diffusion of bulk magnesium atoms dominated the oxidation process. In contrast, a sublimation-enhanced oxidation via gas phase reaction occurred at 200 ℃, leading to the growth of MgO dendrites over the particle that finally leads to the degradation of the magnesium structure. This study provides a direct observation and model of the oxidation mechanism of a direct gas–gas reaction that improves our understanding of the oxidation mechanism at elevated temperatures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ observation of sublimation-enhanced magnesium oxidation at elevated temperature

Show Author's information Zijiao Zhang1Xiaoqian Fu1Minmin Mao1Qian Yu1( )Scott X. Mao1,2( )Jixue Li1Ze Zhang1
Center of Electron Microscopy and State Key Laboratory of Silicon MaterialsDepartment of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
Department of Mechanical Engineering & Materials ScienceUniversity of PittsburghPittsburghPA15261USA

Abstract

Oxidation plays a tremendous role in the long-term performance of metals. As an important lightweight metal for industrial applications, magnesium suffers from its high reactivity with oxygen and increased evaporation at high temperatures. To understand the oxidation mechanism of magnesium at elevated temperatures, in situ environmental transmission electron microscopy (E-TEM) was performed on magnesium nanoparticles. At a relatively low temperature, the growth of a MgO lamellae via the outward diffusion of bulk magnesium atoms dominated the oxidation process. In contrast, a sublimation-enhanced oxidation via gas phase reaction occurred at 200 ℃, leading to the growth of MgO dendrites over the particle that finally leads to the degradation of the magnesium structure. This study provides a direct observation and model of the oxidation mechanism of a direct gas–gas reaction that improves our understanding of the oxidation mechanism at elevated temperatures.

Keywords: nanoparticle, oxidation, magnesium, sublimation

References(32)

1

Czerwinski, F. Oxidation characteristics of magnesium alloys. JOM 2012, 64, 1477–1483.

2

Zhou, G. W.; Luo, L. L.; Li, L.; Ciston, J.; Stach, E. A.; Yang, J. C. Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys. Rev. Lett. 2012, 109, 235502.

3

Czerwinski, F. The oxidation behaviour of an AZ91D magnesium alloy at high temperatures. Acta Mater. 2002, 50, 2639–2654.

4

Fournier, V.; Marcus, P.; Olefjord, I. Oxidation of magnesium. Surf. Interface Anal. 2002, 34, 494–497.

5

Czerwinski, F. The early stage oxidation and evaporation of Mg–9%Al–1%Zn alloy. Corros. Sci. 2004, 46, 377–386.

6

Zheng, H.; Wu, S. J.; Sheng, H. P.; Liu, C.; Liu, Y.; Cao, F.; Zhou, Z. C.; Zhao, X. Z.; Zhao, D. S.; Wang, J. B. Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation. Appl. Phys. Lett. 2014, 104, 141906.

7

Ogawa, S.; Murakami, S.; Shirai, K.; Nakanishi, K.; Ohta, T.; Yagi, S. Nexafs study of air oxidation for Mg nanoparticle thin film. J. Phys. : Conf. Ser. 2013, 417, 012065.

8

Lanthony, C.; Ducéré, J. M.; Rouhani, M. D.; Hemeryck, A.; Estève, A.; Rossi, C. On the early stage of aluminum oxidation: An extraction mechanism via oxygen cooperation. J. Chem. Phys. 2012, 137, 094707.

9

Hasani, S.; Panjepour, M.; Shamanian, M. The oxidation mechanism of pure aluminum powder particles. Oxid. Met. 2012, 78, 179–195.

10

Bertrand, N.; Desgranges, C.; Poquillon, D.; Lafont, M. -C.; Monceau, D. Iron oxidation at low temperature (260–500 ℃) in air and the effect of water vapor. Oxid. Met. 2010, 73, 139–162.

11

Shih, T. -S.; Liu, Z. -B. Thermally-formed oxide on aluminum and magnesium. Mater. Trans. 2006, 47, 1347–1353.

12

Rai, A.; Park, K.; Zhou, L.; Zachariah, M. R. Understanding the mechanism of aluminium nanoparticle oxidation. Comb. Theory Model. 2006, 10, 843–859.

13

Kurth, M.; Graat, P. C. J.; Carstanjen, H. D.; Mittemeijer, E. J. The initial oxidation of magnesium: An in situ study with XPS, HERDA and ellipsometry. Surf. Interface Anal. 2006, 38, 931–940.

14

Schröder, E.; Fasel, R.; Kiejna, A. Mg(0001) surface oxidation: A two-dimensional oxide phase. Phys. Rev. B 2004, 69, 193405.

15

Glass, S.; Nienhaus, H. Continuous monitoring of Mg oxidation by internal exoemission. Phys. Rev. Lett. 2004, 93, 168302.

16

Bungaro, C.; Noguera, C.; Ballone, P.; Kress, W. Early oxidation stages of Mg(0001): A density functional study. Phys. Rev. Lett. 1997, 79, 4433–4436.

17

Thiry, P. A.; Ghijsen, J.; Sporken, R.; Pireaux, J. J.; Johnson, R. L.; Caudano, R. Incipient oxidation of magnesium: A high-resolution electron-energy-loss and photoemission study. Phys. Rev. B 1989, 39, 3620–3631.

18

Hayden, B. E.; Schweizer, E.; Kötz, R.; Bradshaw, A. M. The early stages of oxidation of magnesium single crystal surfaces. Surf. Sci. 1981, 111, 26–38.

19

Scamans, G. M.; Butler, E. P. In situ observations of crystalline oxide formation during aluminum and aluminum alloy oxidation. Metall. Trans. A 1975, 6, 2055–2063.

20

Fehlner, F. P.; Mott, N. F. Low-temperature oxidation. Oxid. Met. 1970, 2, 59–99.

21

Cabrera, N.; Mott, N. F. Theory of the oxidation of metals. Rep. Prog. Phys. 1949, 12, 163–184.

22

Wang, Y.; Fan, Z.; Zhou, X.; Thompson, G. Characterisation of magnesium oxide and its interface with a-Mg in Mg–Albased alloys. Philos. Mag. Lett. 2011, 91, 516–529.

23

Kooi, B. J.; Palasantzas, G.; De Hosson, J. T. M. Gas-phase synthesis of magnesium nanoparticles: A high-resolution transmission electron microscopy study. Appl. Phys. Lett. 2006, 89, 161914.

24

Chen, J. H.; Lu, G. H.; Zhu, L. Y.; Flagan, R. C. A simple and versatile mini-arc plasma source for nanocrystal synthesis. J. Nanopart. Res. 2007, 9, 203–213.

25

Yu, Q.; Mao, M. M.; Li, Q. J.; Fu, X. Q.; Tian, H.; Li, J. X.; Mao, S. X.; Zhang, Z. In situ observation on dislocation-controlled sublimation of Mg nanoparticles. Nano Lett. 2016, 16, 1156–1160.

26

Kooi, B. J.; De Hosson, J. T. M. Influence of misfit and interfacial binding energy on the shape of the oxide precipitates in metals: Interfaces between Mn3O4 precipitates and Pd studied with HRTEM. Acta Mater. 2000, 48, 3687–3699.

27

Noguera, C. Polar oxide surfaces. J. Phys. : Condens. Matter2000, 12, R367.

28

Noguera, C.; Pojani, A.; Casek, P.; Finocchi, F. Electron redistribution in low-dimensional oxide structures. Surf. Sci. 2002, 507-510, 245–255.

29

Lea, C.; Molinari, C. Magnesium diffusion, surface segregation and oxidation in Al-Mg alloys. J. Mater. Sci. 1984, 19, 2336–2352.

30

Smeltzer, W. W. Oxidation of an aluminum-3 per cent magnesium alloy in the temperature range 200–550℃. J. Electrochem. Soc. 1958, 105, 67–71.

31

Egerton, R. F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409.

32

Sundararajan, J. A.; Kaur, M.; Qiang, Y. Mechanism of electron beam induced oxide layer thickening on iron–iron oxide core–shell nanoparticles. J. Phys. Chem. C 2015, 119, 8357–8363.

File
nr-9-9-2796_ESM.pdf (464.3 KB)
nr-9-9-2796_ESM_Movie 1.m4v (8.2 MB)
nr-9-9-2796_ESM_Movie 2.m4v (18.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 March 2016
Revised: 22 May 2016
Accepted: 02 June 2016
Published: 28 July 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported in China by grants from the Chinese 1000 Youth Talent Program and the National Basic Research Program of China (No. 2015CB65930).

Return