Journal Home > Volume 9 , Issue 9

Well-dispersed, uniform cobalt ferrite (CoFe2O4) nanoparticles (NPs) with diameters of 9, 11, 14, and 30 nm were synthesized by thermal decomposition of a metal–organic salt. Multiple variables, including the interparticle distance, moment, and anisotropy, were altered by dilution in a silica matrix and reduction in hydrogen to reveal the intrinsic correlation between the ratio of remanence to saturation magnetization (Mr/Ms) and interparticle dipolar interactions, the strength of which was estimated by the maximum dipolar field Hdip. To date, this correlation has not been systematically investigated experimentally. To prevent the particles from agglomerating, the reduction was performed after dilution. The results revealed that the correlation between Mr/Ms and Hdip roughly followed Mr/Ms ∝ 1/lgHdip independent of the size, distance, moment, and anisotropy of the magnetic nanoparticles. In particular, the correlation was closer for the nanoparticle systems that had higher concentrations or moments, that is, stronger dipolar interactions. For the single-phase CoFe2O4 nanoparticles, deviation from Mr/Ms ∝ 1/lgHdip can be attributed to the effects of surface spin, and for the slightly reduced nanoparticles, this deviation can be attributed to the pinning effect of CoFe2O4 on CoFe2.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 January 2016
Revised: 16 May 2016
Accepted: 02 June 2016
Published: 28 July 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51471001, 11174004, and 11304001).

Return