Journal Home > Volume 9 , Issue 9

Short acquisition time and small volumes of incubated bacterial cultures are ideal for the routine and rapid identification or screening of electricigens in research and applications of microbial fuel cells. In this study, a functional substrate based on colloidal photonic crystals (PCs) was developed both for the filtration and identification of electricigens by surface-enhanced Raman scattering (SERS). The fabrication of the substrate was simplified by electroless plating of silver on filtration-based self-assembled PCs on a filter membrane. The silver-plated ordered PC structure provided a 107-fold enhancement of Raman intensity compared to that obtained with a bare PC substrate. The substrate allowed for a "drop and measure" method of bacterial identification within 5 min with a 5 μL sample volume only. The results showed that not only the electricigens Geobacter sp. and Shewanella sp. could be discriminated with species and strain specificity, but also Geobacter sp. and pilus-mutated Geobacter sp. strains. The developed silver-plated PC filter offers tremendous opportunities in energetic, environmental, and clinical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rapid identification of electricigens via silver-plated photonic crystal filters

Show Author's information Delong Wang1,2Xiangwei Zhao1,2( )Xing Liu1,2Zhongde Mu1,2Zhongze Gu1,2( )
State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
Suzhou Key Laboratory of Environment and BiosafetySuzhou Research Institute of Southeast UniversitySuzhou215123China

Abstract

Short acquisition time and small volumes of incubated bacterial cultures are ideal for the routine and rapid identification or screening of electricigens in research and applications of microbial fuel cells. In this study, a functional substrate based on colloidal photonic crystals (PCs) was developed both for the filtration and identification of electricigens by surface-enhanced Raman scattering (SERS). The fabrication of the substrate was simplified by electroless plating of silver on filtration-based self-assembled PCs on a filter membrane. The silver-plated ordered PC structure provided a 107-fold enhancement of Raman intensity compared to that obtained with a bare PC substrate. The substrate allowed for a "drop and measure" method of bacterial identification within 5 min with a 5 μL sample volume only. The results showed that not only the electricigens Geobacter sp. and Shewanella sp. could be discriminated with species and strain specificity, but also Geobacter sp. and pilus-mutated Geobacter sp. strains. The developed silver-plated PC filter offers tremendous opportunities in energetic, environmental, and clinical applications.

Keywords: surface-enhanced Raman scattering (SERS), electricigens, photonic crystal, electroless plating

References(54)

1

Malvankar, N. S.; Tuominen, M. T.; Lovley, D. R. Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells. Energy Environ. Sci. 2012, 5, 5790–5797.

2

Butler, J. E.; Young, N. D.; Aklujkar, M.; Lovley, D. R. Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production. BMC Genomics 2012, 13, 471.

3

Liu, Y. L.; Chen, Y. -R.; Nou, X.; Chao, K. L. Potential of surface-enhanced Raman spectroscopy for the rapid identification of Escherichia coli and Listeria monocytogenes cultures on silver colloidal nanoparticles. Appl. Spectrosc. 2007, 61, 824–831.

4

Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Obraztsova, A. SERS substrates fabricated using ceramic filters for the detection of bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 153, 591–598.

5

Osawa, M.; Ikeda, M. Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: Contributions of electromagnetic and chemical mechanisms. J. Phys. Chem. 1991, 95, 9914–9919.

6

Shanmukh, S.; Jones, L.; Zhao, Y. -P.; Driskell, J. D.; Tripp, R. A.; Dluhy, R. A. Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Anal. Bioanal. Chem. 2008, 390, 1551–1555.

7

Efrima, S.; Zeiri, L. Understanding SERS of bacteria. J. Raman Spectrosc. 2009, 40, 277–288.

8

Çulha, M.; Yazıcı, M. M.; Kahraman, M.; Şahin, F.; Kocagöz, S. Surface-enhanced Raman scattering of bacteria in microwells constructed from silver nanoparticles. J. Nanotechnol. 2012, 2012, Article ID297560.

9

Aubertin, P.; Ben Aissa, M. A.; Raouafi, N.; Joiret, S.; Courty, A.; Maisonhaute, E. Optical response and SERS properties of individual large scale supracrystals made of small silver nanocrystals. Nano Res. 2015, 8, 1615–1626.

10

Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhou, F.; Hu, X. Y.; Qian, Y. W.; Tang, H. B.; Han, F. M.; Chu, Z. Q. Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Res. 2014, 7, 1177–1187.

11

Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.

12

Tang, H. B.; Meng, G. W.; Li, Z. B.; Zhu, C. H.; Huang, Z. L.; Wang, Z. M.; Li, F. D. Hexagonally arranged arrays of urchin-like Ag hemispheres decorated with Ag nanoparticles for surface-enhanced Raman scattering substrates. Nano Res. 2015, 8, 2261–2270.

13

Chu, H.; Huang, Y. W.; Zhao, Y. P. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection. Appl. Spectrosc. 2008, 62, 922–931.

14

Zhou, Q.; Yang, Y.; Ni, J. E.; Li, Z. C.; Zhang, Z. J. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate. Nano Res. 2010, 3, 423–428.

15

Premasiri, W. R.; Moir, D. T.; Klempner, M. S.; Krieger, N.; Jones, G.; Ziegler, L. D. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J. Phys. Chem. B 2005, 109, 312–320.

16

Feng, L.; Ma, R. P.; Wang, Y. D.; Xu, D. R.; Xiao, D. Y.; Liu, L. X.; Lu, N. Silver-coated elevated bowtie nanoantenna arrays: Improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering. Nano Res. 2015, 8, 3715–3724.

17

Yang, Q.; Deng, M. M.; Li, H. Z.; Li, M. Z.; Zhang, C.; Shen, W. Z.; Li, Y.; Guo, D.; Song, Y. L. Highly reproducible SERS arrays directly written by inkjet printing. Nanoscale 2015, 7, 421–425.

18

Sivanesan, A.; Witkowska, E.; Adamkiewicz, W.; Dziewit, L.; Kaminska, A.; Waluk, J. Nanostructured silver–gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst 2014, 139, 1037–1043.

19

Liu, T. -Y.; Tsai, K. -T.; Wang, H. -H.; Chen, Y.; Chen, Y. -H.; Chao, Y. -C.; Chang, H. -H.; Lin, C. -H.; Wang, J. -K.; Wang, Y. -L. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2011, 2, 538.

20

Chen, J.; Wu, X. M.; Huang, Y. -W.; Zhao, Y. P. Detection of E. coli using SERS active filters with silver nanorod array. Sensor. Actuat. B: Chem. 2014, 191, 485–490.

21

Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149.

22

Kubo, S.; Gu, Z. -Z.; Takahashi, K.; Fujishima, A.; Segawa, H.; Sato, O. Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric field. Chem. Mater. 2005, 17, 2298–2309.

23

González-Tudela, A.; Hung, C. -L.; Chang, D. E.; Cirac, J. I.; Kimble, H. J. Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nat. Photonics 2015, 9, 320–325.

24

Xu, W.; Zhu, Y. S.; Chen, X.; Wang, J.; Tao, L.; Xu, S.; Liu, T.; Song, H. W. A novel strategy for improving upconversion luminescence of NaYF4: Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals. Nano Res. 2013, 6, 795–807.

25

Hou, J.; Zhang, H. C.; Yang, Q.; Li, M. Z.; Song, Y. L.; Jiang, L. Bio-inspired photonic-crystal microchip for fluorescent ultratrace detection. Angew. Chem., Int. Ed. 2014, 53, 5791–5795.

26

Kim, S. M.; Zhang, W.; Cunningham, B. T. Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy. Opt. Express 2010, 18, 4300–4309.

27

Zhao, X. W.; Xue, J. Y.; Mu, Z. D.; Huang, Y.; Lu, M.; Gu, Z. Z. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy. Biosens. Bioelectron. 2015, 72, 268–274.

28

Mu, Z. D.; Zhao, X. W.; Huang, Y.; Lu, M.; Gu, Z. Z. Photonic crystal hydrogel enhanced plasmonic staining for multiplexed protein analysis. Small 2015, 11, 6036–6043.

29

Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.

30

Chen, Z.; Zhan, P.; Wang, Z. L.; Zhang, J. H.; Zhang, W. Y.; Ming, N. B.; Chan, C. T.; Sheng, P. Two-and threedimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating. Adv. Mater. 2004, 16, 417–422.

31

Tremblay, P. L.; Aklujkar, M.; Leang, C.; Nevin, K. P.; Lovley, D. A genetic system for Geobacter metallireducens: Role of the flagellin and pilin in the reduction of Fe(Ⅲ) oxide. Environ. Microbiol. Rep. 2012, 4, 82–88.

32

Liu, X.; Wu, W. G.; Gu, Z. Z. Poly (3, 4-ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell. J. Power Sources 2015, 277, 110–115.

33

Liu, X.; Tremblay, P. -L.; Malvankar, N. S.; Nevin, K. P.; Lovley, D. R.; Vargas, M. A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type Ⅳ pili localizes OmcS on pili but is deficient in Fe(Ⅲ) oxide reduction and current production. Appl. Environ. Microbiol. 2014, 80, 1219–1224.

34

Cho, I. -H.; Bhandari, P.; Patel, P.; Irudayaraj, J. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157: H7 in ground beef. Biosens. Bioelectron. 2015, 64, 171–176.

35

Junesch, J.; Sannomiya, T. Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer. ACS Appl. Mater. Interfaces 2014, 6, 6322–6331.

36

Wei, W. Y.; White, I. M. A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst 2012, 137, 1168–1173.

37

Naja, G.; Bouvrette, P.; Hrapovic, S.; Luong, J. H. Ramanbased detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst 2007, 132, 679–686.

38

Fan, W.; Lee, Y. H.; Pedireddy, S.; Zhang, Q.; Liu, T. X.; Ling, X. Y. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surfaceenhanced Raman scattering (SERS) sensing. Nanoscale 2014, 6, 4843–4851.

39

Zheng, G. C.; Polavarapu, L.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J. Gold nanoparticle-loaded filter paper: A recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. Chem. Commun. 2015, 51, 4572–4575.

40

Zhou, X.; Zhou, F.; Liu, H. L.; Yang, L. B.; Liu, J. H. Assembly of polymer–gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection. Analyst 2013, 138, 5832–5838.

41

Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J. Colloid Interface Sci. 2013, 392, 237–246.

42

Alexander, T. A.; Pellegrino, P. M.; Gillespie, J. B. Near-infrared surface-enhanced-Raman-scattering-mediated detection of single optically trapped bacterial spores. Appl. Spectrosc. 2003, 57, 1340–1345.

43

Duché, D.; Masclaux, C.; Le Rouzo, J.; Gourgon, C. Photonic crystals for improving light absorption in organic solar cells. J. Appl. Phys. 2015, 117, 053108.

44

Guo, M.; Xie, K. Y.; Lin, J.; Yong, Z. H.; Yip, C. T.; Zhou, L. M.; Wang, Y.; Huang, H. T. Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy Environ. Sci. 2012, 5, 9881–9888.

45

Turner, M. D.; Saba, M.; Zhang, Q. M.; Cumming, B. P.; Schröder-Turk, G. E.; Gu, M. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 2013, 7, 801–805.

46

Bell, S. E. J.; Sirimuthu, N. M. S. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 2006, 128, 15580–15581.

47

Wang, Y. L.; Wei, H.; Li, B. L.; Ren, W.; Guo, S. J.; Dong, S. J.; Wang, E. K. SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem. Commun. 2007, 5220–5222.

48

Zhou, H. B.; Yang, D. T.; Mircescu, N. E.; Ivleva, N. P.; Schwarzmeier, K.; Wieser, A.; Schubert, S.; Niessner, R.; Haisch, C. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles. Microchim. Acta 2015, 182, 2259–2266.

49

Guzelian, A. A.; Sylvia, J. M.; Janni, J. A.; Clauson, S. L.; Spencer, K. M. SERS of whole-cell bacteria and trace levels of biological Molecules. In Proceedings of the SPIE 4577, Vibrational Spectroscopy-based Sensor Systems, Boston, USA, 2002, pp 182–192.

50

Zhou, H. B.; Yang, D. T.; Ivleva, N. P.; Mircescu, N. E.; Niessner, R.; Haisch, C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem. 2014, 86, 1525–1533.

51

Guicheteau, J.; Argue, L.; Emge, D.; Hyre, A.; Jacobson, M.; Christesen, S. Bacillus spore classification via surfaceenhanced Raman spectroscopy and principal component analysis. Appl. Spectrosc. 2008, 62, 267–272.

52

Laucks, M. L.; Sengupta, A.; Junge, K.; Davis, E. J.; Swanson, B. D. Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy. Appl. Spectrosc. 2005, 59, 1222–1228.

53

Nevin, K. P.; Kim, B. -C.; Glaven, R. H.; Johnson, J. P.; Woodard, T. L.; Methé, B. A.; DiDonato, R. J., Jr.; Covalla, S. F.; Franks, A. E.; Liu, A. N. et al. Anode biofilmtranscriptomics reveals outer surface components essentialfor high density current production in Geobactersulfurreducens fuel cells. PLoS One, 2009, 4, e5628.

54

Richter, L. V.; Sandler, S. J.; Weis, R. M. Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J. Bacteriol. 2012, 194, 2551–2563.

File
nr-9-9-2760_ESM.pdf (518.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 March 2016
Revised: 31 May 2016
Accepted: 31 May 2016
Published: 21 July 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This paper was supported by the National Natural Science Foundation of China (Nos. 21073033, 21373046 and 21327902), Jiangsu Science and Technology Department (No. 2014707), Suzhou Science and Technology Project (No. ZXG2013036), the State Key Lab of Space Medicine Fundamentals and Application (No. SMFA12K11), Scientific Innovation Research of College Graduate in Jiangsu Province (No. CXZZ13_ 0126), Fundamental Research Funds for the Central Universities and the Program for New Century Excellent Talents in University. The authors thank Professor Derek Lovley from the Department of Microbiology at the University of Massachusetts, Amherst for providing electricigens.

Return