Journal Home > Volume 9 , Issue 9

For practical electronic device applications of graphene nanoribbons (GNRs), it is essential to have abrupt and well-defined contacts between the ribbon and the adjacent metal lead. By analogy with graphene, these contacts can induce electron or hole doping, which may significantly affect the I/V characteristics of the device. Cu is among the most popular metals of choice for contact materials. In this study, we investigate the effect of in situ intercalation of Cu on the electronic structure of atomically precise, spatially aligned armchair GNRs of width N = 7 (7-AGNRs) fabricated via a bottom-up method on the Au(788) surface. Scanning tunneling microscopy data reveal that the complete intercalation of about one monolayer of Cu under 7-AGNRs can be facilitated by gentle annealing of the sample at 80 ℃. Angle-resolved photoemission spectroscopy (ARPES) data clearly reflect the one-dimensional character of the 7-AGNR band dispersion before and after intercalation. Moreover, ARPES and core-level photoemission results show that intercalation of Cu leads to significant electron injection into the nanoribbons, which causes a pronounced downshift of the valence and conduction bands of the GNR with respect to the Fermi energy (ΔE ~ 0.5 eV). As demonstrated by ARPES and X-ray absorption spectroscopy measurements, the effect of Cu intercalation is restricted to n-doping only, without considerable modification of the band structure of the GNRs. Post-annealing of the 7-AGNRs/Cu/Au(788) system at 200 ℃ activates the diffusion of Cu into Au and the formation of a Cu-rich surface Au layer. Alloying of intercalated Cu leads to the recovery of the initial position of GNR-related bands with respect to the Fermi energy (EF), thus, proving the tunability of the induced n-doping.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Effect of electron injection in copper-contacted graphene nanoribbons

Show Author's information Konstantin A. Simonov1,2,3( )Nikolay A. Vinogradov2,3Alexander S. Vinogradov3Alexander V. Generalov2,3Gleb I. Svirskiy3Attilio A. Cafolla4Nils Mårtensson1Alexei B. Preobrajenski2( )
Department of Physics and AstronomyUppsala UniversityUppsala Box 51675120Sweden
MAX IV LaboratoryLund UniversityLund Box 11822100Sweden
V. A. Fock Institute of PhysicsSt. Petersburg State UniversitySt. Petersburg198504Russia
School of Physical SciencesDublin City UniversityDublin 9Ireland

Abstract

For practical electronic device applications of graphene nanoribbons (GNRs), it is essential to have abrupt and well-defined contacts between the ribbon and the adjacent metal lead. By analogy with graphene, these contacts can induce electron or hole doping, which may significantly affect the I/V characteristics of the device. Cu is among the most popular metals of choice for contact materials. In this study, we investigate the effect of in situ intercalation of Cu on the electronic structure of atomically precise, spatially aligned armchair GNRs of width N = 7 (7-AGNRs) fabricated via a bottom-up method on the Au(788) surface. Scanning tunneling microscopy data reveal that the complete intercalation of about one monolayer of Cu under 7-AGNRs can be facilitated by gentle annealing of the sample at 80 ℃. Angle-resolved photoemission spectroscopy (ARPES) data clearly reflect the one-dimensional character of the 7-AGNR band dispersion before and after intercalation. Moreover, ARPES and core-level photoemission results show that intercalation of Cu leads to significant electron injection into the nanoribbons, which causes a pronounced downshift of the valence and conduction bands of the GNR with respect to the Fermi energy (ΔE ~ 0.5 eV). As demonstrated by ARPES and X-ray absorption spectroscopy measurements, the effect of Cu intercalation is restricted to n-doping only, without considerable modification of the band structure of the GNRs. Post-annealing of the 7-AGNRs/Cu/Au(788) system at 200 ℃ activates the diffusion of Cu into Au and the formation of a Cu-rich surface Au layer. Alloying of intercalated Cu leads to the recovery of the initial position of GNR-related bands with respect to the Fermi energy (EF), thus, proving the tunability of the induced n-doping.

Keywords: scanning tunneling microscopy, graphene nanoribbons, bottom-up method, copper intercalation, charge injection, angle-resolved photoemission spectroscopy (ARPES)

References(67)

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

3

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

4

Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Grill, A.; Avouris, P. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662–662.

5

Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.

6

Son, Y. -W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

7

Yang, L.; Park, C. -H.; Son, Y. -W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.

8

Shemella, P.; Zhang, Y. M.; Mailman, M.; Ajayan, P. M.; Nayak, S. K. Energy gaps in zero-dimensional graphene nanoribbons. Appl. Phys. Lett. 2007, 91, 042101.

9

Nguyen, L. T.; Pham, C. H.; Nguyen, V. L. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions. J. Phys. : Condens. Mat. 2011, 23, 295503.

10

Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

11

Bai, J. W.; Huang, Y. Fabrication and electrical properties of graphene nanoribbons. Mater. Sci. Eng. R 2010, 70, 341–353.

12

Yazyev, O. V. A guide to the design of electronic properties of graphene nanoribbons. Acc. Chem. Res. 2013, 46, 2319–2328.

13

Cai, J. M.; Ruffieux, P.; Jaffar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

14

Talirz, L.; Söde, H.; Cai, J. M.; Ruffieux, P.; Blankenburg, S.; Jaffar, R.; Berger, R.; Feng, X. L.; Müllen, K.; Passerone, D. et al. Termini of bottom-up fabricated graphene nanoribbons. J. Am. Chem. Soc. 2013, 135, 2060–2063.

15

Van der Lit, J.; Boneschanscher, M. P.; Vanmaekelbergh, D.; Ijäs, M; Uppstu, A; Ervasti, M; Harju; A.; Liljeroth, P.; Swart, I. Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom. Nat. Commun. 2013, 4, 2023.

16

Chen, Y. -C.; de Oteyza, D. G.; Pedramarzi, Z.; Chen, C.; Ficher, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123–6128.

17

Cai, J. M.; Pignedoli, C. A.; Talirz, L.; Ruffieux, P.; Söde, H.; Liang, L. B.; Meunier, V.; Berger, R.; Li, R. J.; Feng, X. L. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2014, 9, 896–900.

18

Bronner, C., Björk, J., Tegeder, P. Tracking and removing Br during the on-surface synthesis of a graphene nanoribbon. J. Phys. Chem. C. 2015, 119, 486–493.

19

Chen, Y. C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; de Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2015, 10, 156–160.

20

Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomersnanowires-graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808.

21

Zhang, H. M.; Lin, H. P.; Sun, K. W.; Chen, L.; Zagranyarski, Y.; Aghdassi, N.; Duhm, , S.; Li, Q.; Zhong, D. Y.; Li, Y. Y. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 4022–4025.

22

Kimouche, A.; Ervasti, M. M.; Drost, R.; Halonen, S.; Harju, A.; Joensuu, P. M.; Sainio, J.; Liljeroth, P. Ultra-narrow metallic armchair graphene nanoribbons. Nat. Commun. 2015, 6, 10177.

23

Simonov, K. A.; Vinogradov, N. A.; Vinogradov, A. S.; Generalov, A. V.; Zagrebina, E. M.; Mårtensson, N.; Cafolla, A. A.; Carpy, T.; Cunniffe, J. P.; Preobrajenski, A. B. Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: Combined core-level spectroscopy and STM study. J. Phys. Chem. C 2014, 118, 12532–12540.

24

Söde, H.; Talirz, L.; Gröning, O.; Pignedoli, C. A.; Berger, R.; Feng, X. L.; Müllen, K.; Fasel, R; Ruffieux, P. Electronic band dispersion of graphene nanoribbons via Fouriertransformed scanning tunneling spectroscopy. Phys. Rev. B 2015, 91, 045429.

25

Massimi, L.; Ourdjini, O.; Lafferentz, L.; Koch, M.; Grill, L.; Cavaliere, E.; Gavioli, L.; Cardoso, C.; Prezzi, D.; Molinari, E. et al. Surface-assisted reactions toward formation of graphene nanoribbons on Au(110) surface. J. Phys. Chem. C 2015, 119, 2427–2437.

26

Ruffieux, P.; Cai, J. M.; Plumb, N. C.; Patthey, L.; Prezzi, D.; Ferretti, A.; Molinari, E.; Feng, X. L.; Müllen, K.; Pignedoli, C. A. et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano 2012, 6, 6930–6935.

27

Linden, S.; Zhong, D.; Timmer, A.; Aghdassi, N.; Franke, J. H.; Zhang, H.; Feng, X.; Müllen, K.; Fuchs, H.; Chi, L. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 2012, 108, 216801.

28

Huang, H.; Wei, D. C.; Sun, J. T.; Wong, S. L.; Feng, Y. P.; Neto, A. H. C.; Wee, A. T. S. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. Rep. 2012, 2, 983.

29

Han, P.; Akagi, K.; Canova, F. F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 2014, 8, 9181–9187.

30

Simonov, K. A.; Vinogradov, N. A.; Vinogradov, A. S.; Generalov, A. V.; Zagrebina, E. M.; Mårtensson, N.; Cafolla, A. A.; Carpy, T.; Cunniffe, J. P.; Preobrajenski, A. B. Comment on "Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity". ACS Nano 2015, 9, 3399–3403.

31

Simonov, K. A.; Vinogradov, N. A.; Vinogradov, A. S.; Generalov, A. V.; Zagrebina, E. M.; Svirskiy, G. I.; Cafolla, A. A.; Carpy, T.; Cunniffe, J. P.; Taketsugu, T. et al. From graphene nanoribbons on Cu(111) to nanographene on Cu(110): Critical role of substrate structure in the bottom-up fabrication strategy. ACS Nano 2015, 9, 8997–9011.

32

Chen, Z. H.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Phys. E 2007, 40, 228–232.

33

Guo, J. Modeling of graphene nanoribbon devices. Nanoscale 2012, 4, 5538–5548.

34

Bennett, P. B.; Pedramrazi, Z.; Madani, A.; Chen, Y. C.; de Oteyza, D. G.; Chen, C.; Fischer, F. R.; Crommie, M. F.; Bokor, J. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 2013, 103, 253114.

35

Jiao, L. Y.; Wang, X. R.; Diankov, G.; Wang, H. L.; Dai, H. J. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 2010, 5, 321–325.

36

Koch, M.; Ample, F.; Joachim, C.; Grill, L. Voltagedependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 2012, 7, 713–717.

37

Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; Van den Brink, J.; Kelly, P. J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803.

38

Huard, B.; Stander, N.; Sulpizio, J. A.; Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electronhole asymmetry in graphene. Phys. Rev. B 2008, 78, 121402.

39

Lee, E. J. H.; Balasubramanian, K.; Weitz, R. T.; Burghard, M.; Kern, K. Contact and edge effects in graphene devices. Nat. Nanotechnol. 2008, 3, 486–490.

40

Blake, P.; Yang, R.; Morozov, S. V.; Schedin, F.; Ponomarenko, L. A.; Zhukov, A. A.; Nair, R. R.; Grigorieva, I. V.; Novoselov, K. S.; Geim, A. K. Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun. 2009, 149, 1068–1071.

41

Varykhalov, A.; Scholz, M. R.; Kim, T. K.; Rader, O. Effect of noble-metal contacts on doping and band gap of graphene. Phys. Rev. B 2010, 82, 121101.

42

Barraza-Lopez, S.; Vanević, M.; Kindermann, M.; Chou, M. Y. Effects of metallic contacts on electron transport through graphene. Phys. Rev. Lett. 2010, 104, 076807.

43

Xia, F. N.; Perebeinos, V.; Lin, Y. M.; Wu, Y. Q.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179–184.

44

Archambault, C.; Rochefort, A. States modulation in graphene nanoribbons through metal contacts. ACS Nano 2013, 7, 5414–5420.

45

Mencarelli, D.; Pierantoni, L. Analysis of the metal workfunction dependence of charge transfer in contactedgraphene nanoribbons. Nanomater. Nanotechnol. 2012, 2, DOI: 10.5772/54995.

46

Walter, A. L.; Nie, S.; Bostwick, A.; Kim, K. S.; Moreschini, L.; Chang, Y. J.; Innocenti, D.; Horn, K.; McCarty, K. F.; Rotenberg, E. Electronic structure of graphene on singlecrystal copper substrates. Phys. Rev. B 2011, 84, 195443.

47

Vita, H.; Böttcher, S.; Horn, K.; Voloshina, E. N.; Ovcharenko, R. E.; Kampen, T.; Thissen, A.; Dedkov, Y. S. Understanding the origin of band gap formation in graphene on metals: Graphene on Cu/Ir(111). Sci. Rep. 2014, 4, 5704.

48

Ma, T.; Surnev, S.; Netzer, F. P. Growth of ceria nanoislands on a stepped Au(788) surface. Materials 2015, 8, 5205–5215.

49

Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

50

Adams, D. L. FitXPS, v 2; University of Aarhus: Denmark, 2004.

51

Grillo, F.; Früchtl, H.; Francis, S. M.; Richardson, N. V. Site selectivity in the growth of copper islands on Au (111). New J. Phys. 2011, 13, 013044.

52

Wakabayashi, K.; Sasaki, K. I.; Nakanishi, T.; Enoki, T. Electronic states of graphene nanoribbons and analytical solutions. Sci. Technol. Adv. Mater. 2010, 11, 054504.

53

Takeuchi, N.; Chan, C. T.; Ho, K. M. Au(111): A theoretical study of the surface reconstruction and the surface electronic structure. Phys. Rev. B 1991, 43, 13899.

54

Wofford, J. M.; Starodub, E.; Walter, A. L.; Nie, S.; Bostwick, A.; Bartelt, N. C.; Thürmer, K.; Rotenberg, E.; McCarty, K. F.; Dubon, O. D. Extraordinary epitaxial alignment of graphene islands on Au(111). New J. Phys. 2012, 14, 053008.

55

Koch, N. Energy levels at interfaces between metals and conjugated organic molecules. J. Phys. : Condens. Mat. 2008, 20, 184008.

56

Kahn, A.; Koch, N.; Gao, W. Y. Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films. J. Polym. Sci. B Polym. Phys. 2003, 41, 2529–2548.

57

Vasseur, G.; Fagot-Revurat, Y.; Sicot, M.; Kierren, B.; Moreau, L.; Malterre, D.; Cardenas, L.; Galeotti, G.; Lipton-Duffin, J.; Rosei, F. et al. Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires. Nature Commun. 2016, 7, 10235.

58

Marsden, A. J.; Asensio, M. C.; Avila, J.; Dudin, P.; Barinov, A.; Moras, P.; Sheverdyaeva, P. M.; White, T. M.; Maskery, I.; Constantini, G. et al. Is graphene on copper doped? Phys. Status Solidi RRL 2013, 7, 643–646.

59

de Oteyza, D. G.; Wakayama, Y.; Liu, X.; Yang, W.; Cook, P. L.; Himpsel, F. J.; Ortega, J. E. Effect of fluorination on the molecule–substrate interactions of pentacene/Cu(100) interfaces. Chem. Phys. Lett. 2010, 490, 54–57.

60

Baldacchini, C.; Allegretti, F.; Gunnella, R.; Betti, M. G. Molecule–metal interaction of pentacene on copper vicinal surfaces. Surf. Sci. 2007, 601, 2603–2606.

61

McDonald, O.; Cafolla, A. A.; Li, Z. S.; Hughes, G. Synchrotron photoemission studies of pentacene films on Cu (110). Surf. Sci. 2006, 600, 1909–1916.

62

Tompkins, H. G.; Pinnel, M. R. Low-temperature diffusion of copper through gold. J. Appl. Phys. 1976, 47, 3804–3812.

63

Macur, J. E.; Vook, R. W. Interdiffusion phenomena in Au/Cu and Cu/Au bilayers. Thin Solid Films 1980, 66, 311–324.

64

Ravi, R.; Paul, A. Diffusion mechanism in the gold-copper system. J. Mater. Sci. Mater. Electron. 2012, 23, 2152–2156.

65

Ridene, M.; Wassmann, T.; Pallecchi, E.; Rodary, G; Girard, J. C.; Ouerghi, A. Epitaxial graphene on step bunching of a 6H-SiC(0001) substrate: Aromatic ring pattern and Van Hove singularities. Appl. Phys. Lett. 2013, 102, 111610.

66

Kramberger, C.; Rauf, H.; Shiozawa, H.; Knupfer, M.; Büchner, B.; Pichler, T.; Batchelor, D.; Kataura, H. Unraveling van Hove singularities in x-ray absorption response of single-wall carbon nanotubes. Phys. Rev. B 2007, 75, 235437.

67

Mowbray, D. J.; Ayala, P.; Pichler, T.; Rubio, A. Computing C1s X-ray absorption for single-walled carbon nanotubes with distinct electronic type. Mater. Express 2011, 1, 225–230.

File
nr-9-9-2735_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 April 2016
Revised: 24 May 2016
Accepted: 25 May 2016
Published: 18 July 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors are grateful for the financial support from the Swedish Research Council, the Swedish Energy Agency (STEM), the European Research Council under the European Union's Seventh Framework Programme (No. FP7/2007-2013)/ERC grant agreement n° [321319], Knut and Alice Wallenberg Foundation, the St. Petersburg State University (No. 11.38.638.2013), the Russian Foundation for Basic Research (No. 15-02-06369), the Science Foundation of Ireland through the Principal Investigator grant (No. SFI P.I.09/IN.1).

Return