Journal Home > Volume 9 , Issue 9

RuCu nanocages and core–shell Cu@Ru nanocrystals with ultrathin Ru shells were first synthesized by a one-pot modified galvanic replacement reaction. The construction of bimetallic nanocrystals with fully exposed precious atoms and a high surface area effectively realizes the concept of high atom-efficiency. Compared with the monometallic Ru/C catalyst, both the RuCu nanocages and Cu@Ru core–shell catalysts supported on commercial carbon show superior catalytic performance for the regioselective hydrogenation of quinoline toward 1, 2, 3, 4-tetrahydroquinoline. RuCu nanocages exhibit the highest activity, achieving up to 99.6% conversion of quinoline and 100% selectivity toward 1, 2, 3, 4-tetrahydroquinoline.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline

Show Author's information Yueguang Chen§Zhanjun Yu§Zheng ChenRongan ShenYu WangXing CaoQing Peng( )Yadong Li( )
Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and EngineeringTsinghua UniversityBeijing100084China

§These authors contributed equally to this work.

Abstract

RuCu nanocages and core–shell Cu@Ru nanocrystals with ultrathin Ru shells were first synthesized by a one-pot modified galvanic replacement reaction. The construction of bimetallic nanocrystals with fully exposed precious atoms and a high surface area effectively realizes the concept of high atom-efficiency. Compared with the monometallic Ru/C catalyst, both the RuCu nanocages and Cu@Ru core–shell catalysts supported on commercial carbon show superior catalytic performance for the regioselective hydrogenation of quinoline toward 1, 2, 3, 4-tetrahydroquinoline. RuCu nanocages exhibit the highest activity, achieving up to 99.6% conversion of quinoline and 100% selectivity toward 1, 2, 3, 4-tetrahydroquinoline.

Keywords: one-pot synthesis, bimetallics, nanocages, core–shell nanocrystals, hydrogenation of quinoline

References(38)

1

Wu, Y. E.; Wang, D. S.; Niu, Z. Q.; Chen, P. C.; Zhou, G.; Li, Y. D. A strategy for designing a concave Pt–Ni alloy through controllable chemical etching. Angew. Chem., Int. Ed. 2012, 51, 12524–12528.

2

Zhang, J. W.; Zhang, L.; Jia, Y. Y.; Chen, G. X.; Wang, X.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Synthesis of spatially uniform metal alloys nanocrystals via a diffusion controlled growth strategy: The case of Au-Pd alloy trisoctahedral nanocrystals with tunable composition. Nano Res. 2012, 5, 618–629.

3

Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.

4

Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

5

Xu, Y.; Ruban, A. V.; Mavrikakis, M. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J. Am. Chem. Soc. 2004, 126, 4717–4725.

6

Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. Designed synthesis of atom- economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions. J. Am. Chem. Soc. 2004, 126, 5026–5027.

7

Ji, Y. J.; Wu, Y.; Zhao, G. F.; Wang, D. S.; Liu, L.; He, W.; Li, Y. D. Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone. Nano Res. 2015, 8, 2706–2713.

8

Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.

9

Tang, W. J.; Henkelman, G. Charge redistribution in core– shell nanoparticles to promote oxygen reduction. J. Chem. Phys. 2009, 130, 194504.

10

Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao, X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519–1527.

11

Shahane, S.; Louafi, F.; Moreau, J.; Hurvois, J. -P.; Renaud, J. -L.; van de Weghe, P.; Roisnel, T. Synthesis of alkaloids of Galipea officinalis by alkylation of an α-amino nitrile. Eur. J. Org. Chem. 2008, 2008, 4622–4631.

12

Westaway, S. M.; Chung, Y. -K.; Davis, J. B.; Holland, V.; Jerman, J. C.; Medhurst, S. J.; Rami, H. K.; Stemp, G.; Stevens, A. J.; Thompson, M. et al. N-tetrahydroquinolinyl, N-quinolinyl and N-isoquinolinyl biaryl carboxamides as antagonists of TRPV1. Bioorg. Med. Chem. Lett. 2006, 16, 4533–4536.

13

Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Advances in the chemistry of tetrahydroquinolines. Chem. Rev. 2011, 111, 7157–7259.

14

Pitts, M. R.; Harrison, J. R.; Moody, C. J. Indium metal as a reducing agent in organic synthesis. J. Chem. Soc., Perkin Trans. 1 2001, 955–977.

15

Ren, D.; He, L.; Yu, L.; Ding, R. -S.; Liu, Y. -M.; Cao, Y.; He, H. -Y.; Fan, K. -N. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. J. Am. Chem. Soc. 2012, 134, 17592–17598.

16

Ye, H. H.; Wang, Q. X.; Catalano, M.; Lu, N.; Vermeylen, J.; Kim, M. J.; Liu, Y. Z.; Sun, Y. G.; Xia, X. H. Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett. 2016, 16, 2812–2817.

17

Wang, M. D.; Xie, F. Y.; Xie, W. G.; Zheng, S. Z.; Ke, N.; Chen, J.; Zhao, N.; Xu, J. B. Device lifetime improvement of polymer-based bulk heterojunction solar cells by incorporating copper oxide layer at al cathode. Appl. Phys. Lett. 2011, 98, 183304.

18

Durap, F.; Zahmakıran, M.; Özkar, S. Water soluble laurate- stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime. Int. J. Hydrogen Energy 2009, 34, 7223–7230.

19

Qadir, K.; Joo, S. H.; Mun, B. S.; Butcher, D. R.; Renzas, J. R.; Aksoy, F.; Liu, Z.; Somorjai, G. A.; Park, J. Y. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS. Nano Lett. 2012, 12, 5761–5768.

20

Huang, X. Q.; Chen, Y.; Chiu, C. -Y.; Zhang, H.; Xu, Y. X.; Duan, X. F.; Huang, Y. A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to curu nanotubes. Nanoscale 2013, 5, 6284–6290.

21

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

22

Li, Y. J.; Huang, Y. Low-temperature, seed-mediated synthesis of monodispersed hyperbranched PtRu nanoparticles and their electrocatalytic activity in methanol oxidation. J. Mater. Chem. 2012, 22, 12461–12464.

23

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

24

Xiang, J.; Li, P.; Chong, H. B.; Feng, L.; Fu, F. Y.; Wang, Z.; Zhang, S. L.; Zhu, M. Z. Bimetallic Pd-Ni core–shell nanoparticles as effective catalysts for the suzuki reaction. Nano Res. 2014, 7, 1337–1343.

25

Mitsudome, T.; Kaneda, K. Gold nanoparticle catalysts for selective hydrogenations. Green Chem. 2013, 15, 2636–2654.

26

Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H. Z.; Biradar, A. V.; Peng, D. -L.; Zboril, R.; Varma, R. S. Core– shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc Rev. 2015, 44, 7540–7590.

27

Liu, H. -L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.

28

Tao, F. Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem. Soc. Rev. 2012, 41, 7977–7979.

29

Chen, M. S.; Kumar, D.; Yi, C. -W.; Goodman, D. W. The promotional effect of gold in catalysis by palladium-gold. Science 2005, 310, 291–293.

30

Maroun, F.; Ozanam, F.; Magnussen, O. M.; Behm, R. J. The role of atomic ensembles in the reactivity of bimetallic electrocatalysts. Science 2001, 293, 1811–1814.

31

Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A: Chem. 1997, 115, 421–429.

32

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

33

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani- Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

34

Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 1998, 81, 2819–2822.

35

Zhang, J.; Lima, F. H. B.; Shao, M. H.; Sasaki, K.; Wang, J. X.; Hanson, J.; Adzic, R. R. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J. Phys. Chem. B 2005, 109, 22701–22704.

36

Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338.

37

Mahmoud, M. A.; Narayanan, R.; El-Sayed, M. A. Enhancing colloidal metallic nanocatalysis: Sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Acc. Chem. Res. 2013, 46, 1795–1805.

38

Jae, J.; Zheng, W. Q.; Karim, A. M.; Guo, W.; Lobo, R. F.; Vlachos, D. G. The role of Ru and RuO2 in the catalytic transfer hydrogenation of 5-hydroxymethylfurfural for the production of 2, 5-dimethylfuran. ChemCatChem 2014, 6, 848–856.

File
nr-9-9-2632_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 March 2016
Revised: 11 May 2016
Accepted: 13 May 2016
Published: 17 June 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We appreciate the financial support from the National Natural Science Foundation of China (Nos. 21325101, 21231005, and 21171105).

Return