Journal Home > Volume 9 , Issue 9

Silk is a widely available, edible, biocompatible, and environmentally sustainable natural material. Particulate matter (PM) pollution has drawn considerable attention because it is a serious threat to public health. Herein, we report a human-friendly silk nanofiber air filter, which exhibits superior filtration efficiency for both PM2.5 and submicron particles with obviously low pressure drop and low basis weight compared to typical commercial microfiber air filters. Additionally, other functions such as antibacterial activity could be easily integrated into the silk nanofiber air filters, enabling the fabrication of multifunctional air filters. All the above characteristics, combined with the natural abundance and biocompatibility of silk, suggest a great potential for the use of silk nanofibers as air filters, especially as comfortable and personal air purifiers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Silk nanofibers as high efficient and lightweight air filter

Show Author's information Chunya Wang1Shuyi Wu2Muqiang Jian1Jiarong Xie3Luping Xu2Xudong Yang2,3Quanshui Zheng2Yingying Zhang1( )
Department of Chemistry & Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
Department of Engineering Mechanics & Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
Department of Building ScienceTsinghua UniversityBeijing100084China

Abstract

Silk is a widely available, edible, biocompatible, and environmentally sustainable natural material. Particulate matter (PM) pollution has drawn considerable attention because it is a serious threat to public health. Herein, we report a human-friendly silk nanofiber air filter, which exhibits superior filtration efficiency for both PM2.5 and submicron particles with obviously low pressure drop and low basis weight compared to typical commercial microfiber air filters. Additionally, other functions such as antibacterial activity could be easily integrated into the silk nanofiber air filters, enabling the fabrication of multifunctional air filters. All the above characteristics, combined with the natural abundance and biocompatibility of silk, suggest a great potential for the use of silk nanofibers as air filters, especially as comfortable and personal air purifiers.

Keywords: PM2.5, submicron particles, silk nanofibers, air filtration, lightweight

References(33)

1

Nel, A. Air pollution-related illness: Effects of particles. Science 2005, 308, 804–806.

2

Pope, C. A., Ⅲ; Dockery, D. W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742.

3

Zanobetti, A.; Schwartz, J. The effect of fine and coarse particulate air pollution on mortality: A national analysis. Environ. Health Perspect. 2009, 117, 898–903.

4

Dominici, F.; Peng, R. D.; Bell, M. L.; Pham, L.; McDermott, A.; Zeger, S. L.; Samet, J. M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134.

5

Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J. I.; Wiesner, M. R.; Nel, A. E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6, 1794–1807.

6

Wang, C. -S.; Otani, Y. Removal of nanoparticles from gas streams by fibrous filters: A review. Ind. Eng. Chem. Res. 2013, 52, 5–17.

7

Li, P.; Wang, C. Y.; Zhang, Y. Y.; Wei, F. Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes. Small 2014, 10, 4543–4561.

8

Viswanathan, G.; Kane, D. B.; Lipowicz, P. J. High efficiency fine particulate filtration using carbon nanotube coatings. Adv. Mater. 2004, 16, 2045–2049.

9

Park, S. J.; Lee, D. G. Performance improvement of micron- sized fibrous metal filters by direct growth of carbon nanotubes. Carbon 2006, 44, 1930–1935.

10

Halonen, N.; Rautio, A.; Leino, A. R.; Kyllönen, T.; Tóth, G.; Lappalainen, J.; Kordás, K.; Huuhtanen, M.; Keiski, R. L.; Sápi, A. et al. Three-dimensional carbon nanotube scaffolds as particulate filters and catalyst support membranes. ACS Nano 2010, 4, 2003–2008.

11

Park, J. H.; Yoon, K. Y.; Na, H.; Kim, Y. S.; Hwang, J.; Kim, J.; Yoon, Y. H. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy. Sci. Total Environ. 2011, 409, 4132–4138.

12

Li, P.; Zong, Y. C.; Zhang, Y. Y.; Yang, M. M.; Zhang, R. F.; Li, S. Q.; Wei, F. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub- micron aerosols and high water repellency. Nanoscale 2013, 5, 3367–3372.

13

Yildiz, O.; Bradford, P. D. Aligned carbon nanotube sheet high efficiency particulate air filters. Carbon 2013, 64, 295–304.

14

Li, P.; Wang, C. Y.; Li, Z.; Zong, Y. C.; Zhang, Y. Y.; Yang, X. D.; Li, S. Q.; Wei, F. Hierarchical carbon- nanotube/quartz-fiber films with gradient nanostructures for high efficiency and long service life air filters. RSC Adv. 2014, 4, 54115–54121.

15

Wang, C. Y.; Li, P.; Zong, Y. C.; Zhang, Y. Y.; Li, S. Q.; Wei, F. A high efficiency particulate air filter based on agglomerated carbon nanotube fluidized bed. Carbon 2014, 79, 424–431.

16

Zhou, X. Z.; Boey, F.; Zhang, H. Controlled growth of single-walled carbon nanotubes on patterned substrates. Chem. Soc. Rev. 2011, 40, 5221–5231.

17

Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N.; Li, W. Y.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015, 6, 6205.

18

Desai, K.; Kit, K.; Li, J. J.; Davidson, P. M.; Zivanovic, S.; Meyer, H. Nanofibrous chitosan non-wovens for filtration applications. Polymer 2009, 50, 3661–3669.

19

Mao, X.; Si, Y.; Chen, Y. C.; Yang, L. P.; Zhao, F.; Ding, B.; Yu, J. Y. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv. 2012, 2, 12216–12223.

20

Li, D.; Xia, Y. N. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170.

21

Thavasi, V.; Singh, G.; Ramakrishna, S. Electrospun nanofibers in energy and environmental applications. Energy Environ. Sci. 2008, 1, 205–221.

22

Tao, H.; Brenckle, M. A.; Yang, M. M.; Zhang, J. D.; Liu, M. K.; Siebert, S. M.; Averitt, R. D.; Mannoor, M. S.; Mcalpine, M. C.; Rogers, J. A. et al. Silk-based conformal, adhesive, edible food sensors. Adv. Mater. 2012, 24, 1067–1072.

23

Tao, H; Kaplan, D. L.; Omenetto, F. G. Silk materials—A road to sustainable high technology. Adv. Mater. 2012, 24, 2824–2837.

24

Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X. Q.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631.

25

Sandra, P.; Oliveira, J. M.; Reis, R. L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv. Mater. 2015, 27, 1143–1169.

26

Lang, G.; Jokisch, S.; Scheibel, T. Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins. J. Vis. Exp. 2013, DOI: 10.3791/50492.

27

Chen, C. Y. Filtration of aerosols by fibrous media. Chem. Rev. 1955, 55, 595–623.

28

Gong, G. M.; Zhou, C.; Wu, J. T.; Jin, X.; Jiang, L. Nanofibrous adhesion: The twin of gecko adhesion. ACS Nano 2015, 9, 3721–3727.

29

Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271–4275.

30

Quadros, M. E.; Marr, L. C. Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ. Sci. Technol. 2011, 45, 10713–10719.

31

Cao, C.; Jiang, W. J.; Wang, B. Y.; Fang, J. H.; Lang, J. D.; Tian, G.; Jiang, J. K.; Zhu, T. F. Inhalable microorganisms in Beijing's PM2. 5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 2014, 48, 1499–1507.

32

Morone, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353.

33

Shi, Q.; Vitchuli, N.; Nowak, J.; Noar, J.; Caldwell, J. M.; Breidt, F.; Bourham, M.; Mccord, M.; Zhang, X. W. One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J. Mater. Chem. 2011, 21, 10330–10335.

File
nr-9-9-2590_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 February 2016
Revised: 08 May 2016
Accepted: 11 May 2016
Published: 27 June 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We acknowledge Prof. Xiqiao Feng, Prof. Hongping Zhao (Tsinghua University) for fruitful discussions about raw silk materials, thank Mr. Jianwen Ye for his help in providing E. coli and S. aureus. This work was supported by the National Natural Science Foundation of China (Nos. 21203107, 51422204, and 51372132) and the National Basic Research Program of China (No. 2013CB228506).

Return