Journal Home > Volume 9 , Issue 9

Manipulating the alignment of liquid crystals (LCs) is a hot and fundamental issue for their applications in block copolymers, photonics, actuators, biosensors, and liquid-crystal displays. Here, the surface characteristic of Cu2O nanocrystals was well controlled to manipulate the orientation of the LCs. The mechanism of the orientation of the LCs induced by Cu2O nanocrystals was elucidated based on the interaction between the LCs and Cu2O nanocrystals. To comprehensively prove our assumption, different types of LCs (nematic, cholesteric, and smectic) as well as the same type of LCs with different polarities were selected in our system. Moreover, the photomechanical behaviors of the LC polymer composites demonstrated that the alignment of LCs can be effectively manipulated using Cu2O nanocrystals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facet-dependent Cu2O nanocrystals in manipulating alignment of liquid crystals and photomechanical behaviors

Show Author's information Qian Wang1,§Yang Shang1,3,§Li Yu2Cheng Zou2Wenhuan Yao2Dongyu Zhao1Ping Song2Huai Yang2( )Lin Guo1( )
Key Laboratory of Bio-Inspired Smart Interfacial Science and TechnologyMinistry of EducationSchool of Chemistry and EnvironmentBeihang UniversityBeijing100191China
Department of Advanced Materials & NanotechnologyCollege of EngineeringPeking UniversityBeijing100871China
Key Laboratory of Micro-Nano Measurement-Manipulation and PhysicsMinistry of EducationSchool of Physics and Nuclear Energy EngineeringBeihang UniversityBeijing100191China

§ These authors contributed equally to this work.

Abstract

Manipulating the alignment of liquid crystals (LCs) is a hot and fundamental issue for their applications in block copolymers, photonics, actuators, biosensors, and liquid-crystal displays. Here, the surface characteristic of Cu2O nanocrystals was well controlled to manipulate the orientation of the LCs. The mechanism of the orientation of the LCs induced by Cu2O nanocrystals was elucidated based on the interaction between the LCs and Cu2O nanocrystals. To comprehensively prove our assumption, different types of LCs (nematic, cholesteric, and smectic) as well as the same type of LCs with different polarities were selected in our system. Moreover, the photomechanical behaviors of the LC polymer composites demonstrated that the alignment of LCs can be effectively manipulated using Cu2O nanocrystals.

Keywords: liquid crystals, facet-dependent, Cu2O nanocrystals, alignment, photoactuators

References(35)

1

Yu, H. F.; Kobayashi, T.; Yang, H. Liquid-crystalline ordering helps block copolymer self-assembly. Adv. Mater. 2011, 23, 3337–3344.

2

Chen, G.; Wang, L.; Wang, Q.; Sun, J.; Song, P.; Chen, X. W.; Liu, X.; Guan, S. H.; Zhang, X. G.; Wang, L. P. et al. Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection. ACS Appl. Mater. Interfaces 2014, 6, 1380–1384.

3

Yu, Y. L.; Ikeda, T. Soft actuators based on liquid-crystalline elastomers. Angew. Chem., Int. Ed. 2006, 45, 5416–5418.

4

Bi, X. Y.; Hartono, D.; Yang, K. L. Real-time liquid crystal pH sensor for monitoring enzymatic activities of penicillinase. Adv. Funct. Mater. 2009, 19, 3760–3765.

5

Ma, J.; Hurley, S.; Zheng, Z. G.; Yang, D. K. Investigation of alignment direction in wide view film and rubbing angle of twisted nematic liquid crystal display mode. Liq. Cryst. 2009, 36, 487–492.

6

Hoogboom, J.; Elemans, J. A. A. W.; Rasing, T.; Rowan, A. E.; Nolte, R. J. M. Supramolecular command surfaces for liquid crystal alignment. Polym. Int. 2007, 56, 1186–1191.

7

Kundu, S.; Lee, M. H.; Lee, S. H.; Kang, S. W. In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification. Adv. Mater. 2013, 25, 3365–3370.

8

Finkelmann, H.; Kock, H. J.; Rehage, H. Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers—A new type of liquid crystalline material. Die Makromol. Chem. Rapid Commun. 1981, 2, 317–322.

9

Criante, L.; Scotognella, F. Low-voltage tuning in a nanoparticle/liquid crystal photonic structure. J. Phys. Chem. C 2012, 116, 21572–21576.

10

Teng, W. Y.; Jeng, S. C.; Kuo, C. W.; Lin, Y. R.; Liao, C. C.; Chin, W. K. Nanoparticles-doped guest–host liquid crystal displays. Opt. Lett. 2008, 33, 1663–1665.

11

Wang, L.; He, W. L.; Xiao, X.; Meng, F. G.; Zhang, Y.; Yang, P. Y.; Wang, L. P.; Xiao, J. M.; Yang, H.; Lu, Y. F. Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles. Small 2012, 8, 2189–2193.

12

Wang, L.; He, W. L.; Xiao, X.; Wang, M.; Wang, M.; Yang, P. Y.; Zhou, Z. J.; Yang, H.; Yu, H. F.; Lu, Y. F. Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles. J. Mater. Chem. 2012, 22, 19629–19633.

13

Qi, H.; Hegmann, T. Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J. Mater. Chem. 2008, 18, 3288–3294.

14

Russell, J. M.; Oh, S.; LaRue, I.; Zhou, O.; Samulski, E. T. Alignment of nematic liquid crystals using carbon nanotube films. Thin Solid Films 2006, 509, 53–57.

15

Lu, S. Y.; Chien, L. C. Carbon nanotube doped liquid crystal OCB cells: Physical and electro-optical properties. Opt. Express 2008, 16, 12777–12785.

16

Qi, H.; O'Neil, J.; Hegmann, T. Chirality transfer in nematic liquid crystals doped with (S)-naproxen-functionalized gold nanoclusters: An induced circular dichroism study. J. Mater. Chem. 2008, 18, 374–380.

17

Jeng, S. C.; Kuo, C. W.; Wang, H. L.; Liao, C. C. Nanoparticles-induced vertical alignment in liquid crystal cell. Appl. Phys. Lett. 2007, 91, 061112.

18

Qi, H.; Kinkead, B.; Hegmann, T. Unprecedented dual alignment mode and freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters. Adv. Funct. Mater. 2008, 18, 212–221.

19

Zhou, W.; Lin, L. J.; Zhao, D. Y.; Guo, L. Synthesis of nickel bowl-like nanoparticles and their doping for inducing planar alignment of a nematic liquid crystal. J. Am. Chem. Soc. 2011, 133, 8389–8391.

20

Zhao, D. Y.; Zhou, W.; Cui, X. P.; Tian, Y.; Guo, L.; Yang, H. Alignment of liquid crystals doped with nickel nanoparticles containing different morphologies. Adv. Mater. 2011, 23, 5779–5784.

21

Qi, H.; Kinkead, B.; Marx, V. M.; Zhang, H. R.; Hegmann, T. Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts. ChemPhysChem 2009, 10, 1211–1218.

22

Kinkead, B.; Hegmann, T. Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture. J. Mater. Chem. 2010, 20, 448–458.

23

Qi, H.; Hegmann, T. Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles. J. Mater. Chem. 2006, 16, 4197–4205.

24

Stöhr, J.; Samant, M. G.; Luning, J.; Callegari, A. C.; Chaudhari, P.; Doyle, J. P.; Lacey, J. A.; Lien, S. A.; Purushothaman, S.; Speidell, J. L. Liquid crystal alignment on carbonaceous surfaces with orientational order. Science 2001, 292, 2299–2302.

25

Zhang, D. F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X. D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225.

26

Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 1261–1267.

27

Li, M. H.; Keller, P.; Li, B., Wang, X.; Brunet, M. Light- driven side-on nematic elastomer actuators. Adv. Mater. 2003, 15, 569–572.

28

Li, M. H.; Auroy, P.; Keller, P. An azobenzene-containing side-on liquid crystal polymer. Liq. Cryst. 2000, 27, 1497– 1502.

29

Yang, K. L.; Cadwell, K.; Abbott, N. L. Mechanistic study of the anchoring behavior of liquid crystals supported on metal salts and their orientational responses to dimethyl methylphosphonate. J. Phys. Chem. B 2004, 108, 20180– 20186.

30

Barmatov, E. B.; Medvedev, A. S.; Pebalk, D. A.; Barmatova, M. B.; Nikonorova, N. A.; Zezin, S. B.; Shibaev, V. P. The effect of silver nanoparticles on the phase state of comb-shaped liquid crystalline polymers with cyanobiphenyl mesogenic groups. Polym. Sci. Ser. A 2006, 48, 665–675.

31

Ho, J. Y.; Huang, M. H. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J. Phys. Chem. C 2009, 113, 14159–14164.

32

Shang, Y.; Guo, L. Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing. Adv. Sci. 2015, 2, 1500140.

33

Urbanski, M.; Mirzaei, J.; Hegmann, T.; Kitzerow, H. S. Nanoparticle doping in nematic liquid crystals: Distinction between surface and bulk effects by numerical simulations. ChemPhysChem 2014, 15, 1395–1404.

34

Wang, W.; Sun, X. M.; Wu, W.; Peng, H. S.; Yu, Y. L. Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. Angew. Chem., Int. Ed. 2012, 51, 4722–4725.

35

Sun, X. M.; Wang, W.; Qiu, L. B.; Guo, W. H.; Yu, Y. L.; Peng, H. S. Unusual reversible photomechanical actuation in polymer/nanotube composites. Angew. Chem., Int. Ed. 2012, 51, 8520–8524.

Video
nr-9-9-2581_ESM_Video S1.mov
File
nr-9-9-2581_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 February 2016
Revised: 09 May 2016
Accepted: 10 May 2016
Published: 15 June 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was mainly supported by National Basic Research Program of China (No. 2014CB931802), the Major Project of International Cooperation of the Ministry of Science and Technology (No. 2013DFB50340), National Natural Science Foundations of China (Nos. 51272012, 21471013, 51532001, 51333001, 51173003, 51402006 and 51303007), the Major Program of Chinese Ministry of Education (No. 313002), the Beijing Natural Science Foundation (No. 2163052) and China Postdoctoral Science Foundation Funded Project (No. 2015M570916).

Return