Journal Home > Volume 9 , Issue 9

Interface/surface properties play an important role in the development of most electronic devices. In particular, nanowires possess large surface areas that create new challenges for their optoelectronic applications. Here, we demonstrated that the piezoelectric field and UV laser illumination modulate the surface potential distribution of a bent ZnO wire by the Kelvin probe force microscopy technology. Experiments showed that the surface potential distribution was changed by strain. The difference of surface potential between the outer/inner sides of the ZnO wire increased with increasing strain. Under UV laser illumination, the difference of surface potential between the outer/inner sides of the ZnO wire increased with increasing strain and illumination time. The origin of the observed phenomenon was discussed in terms of the energy band diagram of the bent wire and adsorption/desorption theory. It is suggested that the change of surface potential can be attributed to the uneven distribution of the carrier density across the wire deduced by the piezoelectric effect and surface adsorption/desorption of oxygen ions. This study provides an important insight into the surface and piezoelectric effects on the surface potential and can help optimize the performance of electronic and optoelectronic devices.


menu
Abstract
Full text
Outline
About this article

The coupling influence of UV illumination and strain on the surface potential distribution of a single ZnO micro/nano wire

Show Author's information Zhao Wu1Junjie Qi1( )Feng Li1Xiaoyang Zhu1Zengze Wang1Guangjie Zhang1Yue Zhang1,2( )
School of Materials Science and EngineeringState Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijing100083China
The Beijing Municipal Key Laboratory of New Energy Materials and TechnologiesUniversity of Science and Technology BeijingBeijing100083China

Abstract

Interface/surface properties play an important role in the development of most electronic devices. In particular, nanowires possess large surface areas that create new challenges for their optoelectronic applications. Here, we demonstrated that the piezoelectric field and UV laser illumination modulate the surface potential distribution of a bent ZnO wire by the Kelvin probe force microscopy technology. Experiments showed that the surface potential distribution was changed by strain. The difference of surface potential between the outer/inner sides of the ZnO wire increased with increasing strain. Under UV laser illumination, the difference of surface potential between the outer/inner sides of the ZnO wire increased with increasing strain and illumination time. The origin of the observed phenomenon was discussed in terms of the energy band diagram of the bent wire and adsorption/desorption theory. It is suggested that the change of surface potential can be attributed to the uneven distribution of the carrier density across the wire deduced by the piezoelectric effect and surface adsorption/desorption of oxygen ions. This study provides an important insight into the surface and piezoelectric effects on the surface potential and can help optimize the performance of electronic and optoelectronic devices.

Keywords: ZnO, strain, ultraviolet illumination, surface potential

References(33)

1

Bai, S.; Wu, W. W.; Qin, Y.; Cui, N. Y.; Bayerl, D. J.; Wang, X. D. High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Adv. Funct. Mater. 2011, 21, 4464–4469.

2

Look, D. C. Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 2001, 80, 383–387.

3

Wang, Z. L.; Wu, W. Z. Piezotronics and piezo-phototronics: Fundamentals and applications. Natl. Sci. Rev. 2014, 1, 62–90.

4

Nesakumar, N.; Sethuraman, S.; Krishnan, U. M.; Rayappan, J. B. B. Electrochemical acetylcholinesterase biosensor based on ZnO nanocuboids modified platinum electrode for the detection of carbosulfan in rice. Biosens. Bioelectron. 2016, 77, 1070–1077.

5

Qi, J. J.; Hu, X. F.; Wang, Z. Z.; Li, X.; Liu, W.; Zhang, Y. A self-powered ultraviolet detector based on a single ZnO microwire/p-Si film with double heterojunctions. Nanoscale 2014, 6, 6025–6029.

6

Alenezi, M. R.; Henley, S. J.; Silva, S. R. P. On-chip fabrication of high performance nanostructured ZnO UV detectors. Sci. Rep. 2015, 5, 8516.

7

Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

8

Kawawaki, T.; Wang, H. B.; Kubo, T.; Saito, K.; Nakazaki, J.; Segawa, H.; Tatsuma, T. Efficiency enhancement of PbS quantum dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes. ACS Nano 2015, 9, 4165–4172.

9

Bie, Y. Q.; Liao, Z. M.; Zhang, H. Z.; Li, G. R.; Ye, Y.; Zhou, Y. B.; Xu, J.; Qin, Z. X.; Dai, L.; Yu, D. P. Self- powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011, 23, 649–653.

10

Ren, X. L.; Zhang, X. H.; Liu, N. S.; Wen, L.; Ding, L. W.; Ma, Z. W.; Su, J.; Li, L. Y.; Han, J. B.; Gao, Y. H. White light-emitting diode from Sb-doped p-ZnO nanowire arrays/ n-GaN film. Adv. Funct. Mater. 2015, 25, 2182–2188.

11

Lu, S. N.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Piezotronic interface engineering on ZnO/Au-based Schottky junction for enhanced photoresponse of a flexible self-powered UV detector. ACS Appl. Mat. Interfaces 2014, 6, 14116–14122.

12

Shi, J.; Zhao, P.; Wang, X. D. Piezoelectric-polarization- enhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 2013, 25, 916–921.

13

Bao, R. R.; Wang, C. F.; Dong, L.; Yu, R. M.; Zhao, K.; Wang, Z. L.; Pan, C. F. Flexible and controllable piezo- phototronic pressure mapping sensor matrix by ZnO NW/p- polymer LED array. Adv. Funct. Mater. 2015, 25, 2884–2891.

14

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. -H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

15

Wang, Z. N.; Yu, R. M.; Pan, C. F.; Liu, Y.; Ding, Y.; Wang, Z. L. Piezo-phototronic UV/visible photosensing with optical-fiber-nanowire hybridized structures. Adv. Mater. 2015, 27, 1553–1560.

16

Soudi, A.; Dhakal, P.; Gu, Y. Diameter dependence of the minority carrier diffusion length in individual ZnO nanowires. Appl. Phys. Lett. 2010, 96, 253115.

17

Jing, L. Q.; Sun, X. J.; Shang, J.; Cai, W. M.; Xu, Z. L.; Du, Y. G.; Fu, H. G. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol. Energ. Mat. Sol. C. 2003, 79, 133–151.

18

Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237–244.

19

Lin, P.; Chen, X.; Yan, X. Q.; Zhang, Z.; Yuan, H. G.; Li, P. F.; Zhao, Y. G.; Zhang, Y. Enhanced photoresponse of Cu2O/ZnO heterojunction with piezo-modulated interface engineering. Nano Res. 2014, 7, 860–868.

20

Schuster, F.; Laumer, B.; Zamani, R. R.; Magén, C.; Morante, J. R.; Arbiol, J.; Stutzmann, M. p-GaN/n-ZnO heterojunction nanowires: Optoelectronic properties and the role of interface polarity. ACS Nano 2014, 8, 4376–4384.

21

Wu, W. Z.; Pan, C. F.; Zhang, Y.; Wen, X. N.; Wang, Z. L. Piezotronics and piezo-phototronics—From single nanodevices to array of devices and then to integrated functional system. Nano Today 2013, 8, 619–642.

22

Kathalingam, A.; Valanarasu, S.; Senthilkumar, V.; Rhee, J. -K. Piezo and photoelectric coupled nanogenerator using CdSe quantum dots incorporated ZnO nanowires in ITO/ZnO NW/Si structure. Mater. Chem. Phys. 2013, 138, 262–269.

23

Han, X. L.; Kou, L. Z.; Lang, X. L.; Xia, J. B.; Wang, N.; Qin, R.; Lu, J.; Xu, J.; Liao, Z. M.; Zhang, X. Z. et al. Electronic and mechanical coupling in bent ZnO nanowires. Adv. Mater. 2009, 21, 4937–4941.

24

Fu, X. W.; Su, C.; Fu, Q.; Zhu, X. L.; Zhu, R.; Liu, C. P.; Liao, Z. M.; Xu, J.; Guo, W. L.; Feng, J. et al. Tailoring exciton dynamics by elastic strain-gradient in semiconductors. Adv. Mater. 2014, 26, 2572–2579.

25

Wang, Z. Z.; Gu, Y. S.; Qi, J. J.; Lu, S. N.; Li, P. F.; Lin, P.; Zhang, Y. Size dependence and UV irradiation tuning of the surface potential in single conical ZnO nanowires. RSC Adv. 2015, 5, 42075–42080.

26

Bayerl, D. J.; Wang, X. D. Three-dimensional kelvin probe microscopy for characterizing in-plane piezoelectric potential of laterally deflected ZnO micro-/nanowires. Adv. Funct. Mater. 2012, 22, 652–660.

27

Xu, S. G.; Guo, W. H.; Du, S. W.; Loy, M. M. T.; Wang, N. Piezotronic effects on the optical properties of ZnO nanowires. Nano Lett. 2012, 12, 5802–5807.

28

Shi, J.; Starr, M. B.; Wang, X. D. Band structure engineering at heterojunction interfaces via the piezotronic effect. Adv. Mater. 2012, 24, 4683–4691.

29

Fu, X. W.; Liao, Z. M.; Xu, J.; Wu, X. S.; Guo, W. L.; Yu, D. P. Improvement of ultraviolet photoresponse of bent ZnO microwires by coupling piezoelectric and surface oxygen adsorption/desorption effects. Nanoscale 2013, 5, 916–920.

30

Teke, A.; Özgür, Ü.; Doğan, S.; Gu, X.; Morkoç, H.; Nemeth, B.; Nause, J.; Everitt, H. O. Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys. Rev. B 2004, 70, 195207.

31

Look, D. C.; Reynolds, D. C.; Litton, C. W.; Jones, R. L.; Eason, D. B.; Cantwell, G. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett. 2002, 81, 1830–1832.

32

Gao, Y. F.; Wang, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 2007, 7, 2499–2505.

33

Kaidashev, E. M.; Lorenz, M.; Von Wenckstern, H.; Rahm, A.; Semmelhack, H. -C.; Han, K. -H.; Benndorf, G.; Bundesmann, C.; Hochmuth, H.; Grundmann, M. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett. 2003, 82, 3901–3903.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 February 2016
Revised: 09 May 2016
Accepted: 10 May 2016
Published: 15 June 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CB932602), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51527802, 51232001, and 51572025), Beijing Municipal Science & Technology Commission, the Fundamental Research Funds for Central Universities, State Key Laboratory for Advanced Metals and Materials.

Return