Journal Home > Volume 9 , Issue 8

Single wall carbon nanotubes (SWNTs) are known for their exceptional electronic properties. However, most of the synthesis methods lead to the production of a mixture of carbon nanotubes having different chiralities associated with metallic (m-SWNTs) and semiconducting (s-SWNTs) characteristics. For application purposes, effective methods for separating these species are highly desired. Here, we report a protocol for achieving a highly selective separation of s-SWNTs that exhibit a fundamental optical transition centered at 1, 550 nm. We employ a polymer assisted sorting approach, and the influence of preparation methods on the optical and transport performances of the separated nanotubes is analyzed. As even traces of m-SWNTs can critically affect performances, we aim to produce samples that do not contain any detectable fraction of residual m-SWNTs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly selective sorting of semiconducting single wall carbon nanotubes exhibiting light emission at telecom wavelengths

Show Author's information Francesco Sarti1Francesco Biccari1Federica Fioravanti1Ughetta Torrini1Anna Vinattieri1Vincent Derycke2Massimo Gurioli1Arianna Filoramo2( )
Department of Physics and LENSUniversity of FlorenceVia Sansone 150019Sesto Fiorentino, Italy
LICSENNIMBECEACNRSUniversity Paris-SaclayCEA Saclay91191Gif sur Yvette CEDEX, France

Abstract

Single wall carbon nanotubes (SWNTs) are known for their exceptional electronic properties. However, most of the synthesis methods lead to the production of a mixture of carbon nanotubes having different chiralities associated with metallic (m-SWNTs) and semiconducting (s-SWNTs) characteristics. For application purposes, effective methods for separating these species are highly desired. Here, we report a protocol for achieving a highly selective separation of s-SWNTs that exhibit a fundamental optical transition centered at 1, 550 nm. We employ a polymer assisted sorting approach, and the influence of preparation methods on the optical and transport performances of the separated nanotubes is analyzed. As even traces of m-SWNTs can critically affect performances, we aim to produce samples that do not contain any detectable fraction of residual m-SWNTs.

Keywords: optical properties, sorting, field effect transistors, single wall carbon nanotube (SWNT)

References(47)

1

Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605-615.

2

Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824-2860.

3

Tenent, R. C.; Barnes, T. M.; Bergeson, J. D.; Ferguson, A. J.; To, B.; Gedvilas, L. M.; Heben, M. J.; Blackburn, J. L. Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 2009, 21, 3210-3216.

4

Dillon, A. C. Carbon nanotubes for photoconversion and electrical energy storage. Chem. Rev. 2010, 110, 6856-6872.

5

Zeng, Q. S.; Wang, S.; Yang, L. J.; Wang, Z. X.; Zhang, Z. Y.; Peng, L. M.; Zhou, W. Y.; Xie, S. S. Doping-free fabrication of carbon nanotube thin-film diodes and their photovoltaic characteristics. Nano Res. 2012, 5, 33-42.

6

Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Near- infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86-92.

7

St-Antoine, B. C.; Ménard, D.; Martel, R. Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett. 2011, 11, 609-613.

8

Liu, Y.; Wei, N.; Zhao, Q. L.; Zhang, D. H.; Wang, S.; Peng, L. M. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes. Nanoscale 2015, 7, 6805-6812.

9

Freitag, M.; Perebeinos, V.; Chen, J.; Stein, A.; Tsang, J. C.; Misewich, J. A.; Martel, R.; Avouris, P. Hot carrier electroluminescence from a single carbon nanotube. Nano Lett. 2004, 4, 1063-1066.

10

Mueller, T.; Kinoshita, M.; Steiner, M.; Perebeinos, V.; Bol, A. A.; Farmer, D. B.; Avouris, P. Efficient narrow band light emission from a single carbon nanotube p-n diode. Nat. Nanotechnol. 2010, 5, 27-31.

11

Koyama, T.; Miyata, Y.; Asada, Y.; Shinohara, H.; Kataura, H.; Nakamura, A. Bright luminescence and exciton energy transfer in polymer-wrapped single-walled carbon nanotube bundles. J. Phys. Chem. Lett. 2010, 1, 3243-3248.

12

Koyama, T.; Shimizu, S.; Saito, T.; Miyata, Y.; Shinohara, H.; Nakamura, A. Ultrafast luminescence kinetics of metallic single walled carbon nanotubes: Possible evidence for excitonic luminescence. Phys. Rev. B 2012, 85, 045428.

13

Grechko, M.; Ye, Y. M.; Mehlenbacher, R. D.; McDonough, T. J.; Wu, M. Y.; Jacobberger, R. M.; Arnold, M. S.; Zanni, M. T. Diffusion-assisted photoexcitation transfer in coupled semiconducting carbon nanotube thin films. ACS Nano 2014, 8, 5383-5394.

14

Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145-2147.

15

Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Kang, S. J.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195-1202.

16

Choi, S. J.; Wang, C.; Lo, C. C.; Bennet, P.; Javey, A.; Bokor, J. Comparative study of solution-processed carbon nanotube network transistors. Appl. Phys. Lett. 2012, 101, 112104.

17

Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.

18

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654-657.

19

Chen, Z. H.; Appenzeller, J.; Knoch, J.; Lin, Y. M.; Avouris, P. The role of metal−nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497-1502.

20

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60-65.

21

Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250-253.

22

Zhang, Y. Y.; Zhang, Y.; Xian, X. J.; Zhang, J.; Liu, Z. F. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J. Phys. Chem. C 2008, 112, 3849- 3856.

23

Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H. L.; Morishita, S.; Patil, N.; Park, Y. J. et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3- alkylthiophene)s. Nat. Commun. 2011, 2, 541.

24

Darchy, L.; Hanifi, N.; Vialla, F.; Voisin, C.; Bayle, P. A.; Genovese, L.; Celle, C.; Simonato, J. P.; Filoramo, A.; Derycke, V. et al. A highly selective non radical diazo coupling provides low cost semi conducting carbon nanotubes. Carbon 2014, 66, 246-258.

25

Yahay, I.; Bonaccorso, F.; Clowes, S. K.; Ferrari, A. C.; Silva, S. R. P. Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography. Carbon 2015, 93, 574-594.

26

Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640-646.

27

Chen, F. M.; Wang, B.; Chen, Y.; Li, L. J. Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 2007, 7, 3013-3017.

28

Izard, N.; Kazaoui, S.; Hata, K.; Okazaki, T.; Saito, T.; Ijima, S.; Minami, N. Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors. Appl. Phys. Lett. 2008, 92, 243112.

29

Gaufrès, E.; Izard, N.; Noury, A.; Le Roux, X.; Rasigade, G.; Beck, A.; Vivien, L. Light emission in silicon from carbon nanotubes. ACS Nano 2012, 6, 3813-3819.

30

Gomulya, W.; Costanzo, G. D.; Figueiredo de Carvalho, E. J.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Fröhlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A. et al. Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. Adv. Mater. 2013, 25, 2948-2956.

31

Wang, W. Z.; Li, W. F.; Pan, X. Y.; Li, C. M.; Li, L. J.; Mu, Y. G.; Rogers, J. A.; Chan-Park, M. B. Degradable conjugated polymers: Synthesis and applications in enrichment of semiconducting single-walled carbon nanotubes. Adv. Funct. Mater. 2011, 21, 1643-1651.

32

Tange, M.; Okazaki, T.; Iijima, S. Selective extraction of semiconducting single-wall carbon nanotubes by poly(9, 9- dioctylfluorene-alt-pyridine) for 1.5 μm emission. ACS Appl. Mater. Interfaces 2012, 4, 6458-6462.

33

Tange, M.; Okazaki, T.; Iijima, S. Selective extraction of large-diameter single-wall carbon nanotubes with specific chiral indices by poly(9, 9-dioctylfluorene-alt-benzothiadiazole). J. Am. Chem. Soc. 2011, 133, 11908-11911.

34

Zhang, X.; Zhao, J. W.; Tange, M.; Xu, W. Y.; Xu, W. W.; Zhang, K. D.; Guo, W. R.; Okazaki, T.; Cui, Z. Sorting semiconducting single walled carbon nanotubes by poly(9, 9- dioctylfluorene) derivatives and application for ammonia gas sensing. Carbon 2015, 94, 903-910.

35

Mistry, K. S.; Larsen, B. A.; Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 2013, 7, 2231-2239.

36

Yang, H. L.; Bezugly, V.; Kunstmann, J.; Filoramo, A.; Cuniberti, G. Diameter-selective dispersion of carbon nanotubes via polymers: A competition between adsorption and bundling. ACS Nano 2015, 9, 9012-9019.

37

Jost, O.; Gorbunov, A. A.; Möller, J.; Pompe, W.; Graff, A.; Friedlein, R.; Liu, X.; Golden, M. S.; Fink, J. Impact of catalyst coarsening on the formation of single-wall carbon nanotubes. Chem. Phys. Lett. 2001, 339, 297-304.

38

Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235-1238.

39

O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, J. P.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593-596.

40

Campoy-Quiles, M.; Etchegoin, P. G.; Bradley, D. D. C. Exploring the potential of ellipsometry for the characterisation of electronic, optical, morphologic and thermodynamic properties of polyfluorene thin films. Synthetic Met. 2005, 155, 279-282.

41

Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827-829.

42

Dresselhaus, M. S.; Dresselhaus, G.; Hofmann, M. The big picture of Raman scattering in carbon nanotubes. Vib. Spectrosc. 2007, 45, 71-81.

43

Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751-758.

44

Li, Z.; Ding, J. F.; Finnie, P.; Lefebvre, J.; Cheng, F. Y.; Kingston, C. T.; Malenfant, P. R. L. Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors. Nano Res. 2015, 8, 2179-2187.

45

Bisri, S. Z.; Gao, J.; Derenskyi, V.; Gomulya, W.; Iezhokin, I.; Gordiichuk, P.; Herrmann, A.; Loi, M. A. High performance ambipolar field-effect transistor of random network carbon nanotubes. Adv. Mater. 2012, 24, 6147-6152.

46

Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris, P. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett 2001, 87, 256805.

47

Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, P. Carbon nanotubes as schottky barrier transistors. Phys. Rev. Lett. 2002, 89, 106801.

File
nr-9-8-2478_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 February 2016
Revised: 28 April 2016
Accepted: 03 May 2016
Published: 29 June 2016
Issue date: August 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was funded by the European Union through the FP7 Project CARTOON (Contract FP7-618025).

Return