Journal Home > Volume 9 , Issue 8

A general method is proposed to synthesize ultrafine nanoporous Cu, Ag, and Ni with novel sponge-like morphologies, high porosities, and large surface areas. The materials are produced by dealloying Mg65M25Y10 (M = Cu, Ag, and Ni) metallic glasses in citric acid. Citric acid played a key role due to its capping effect, which reduced the surface diffusion of metals. A structural model consistent with the sponge-like morphology was constructed to calculate the porosity and the surface area. The mechanism of the dealloying process in citric acid, involving ligament formation and coarsening, was illustrated. The mechanism was capable of explaining the experimental trends of dealloying, especially the morphology. A glucose sensor, which can be further developed into a high-precision real-time glucose monitor for medical use, was constructed using sponge-like nanoporous copper. Our findings are not only relevant to understanding the dealloying mechanism of metallic glasses, but also provide promising materials for multiple applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

General synthesis of sponge-like ultrafine nanoporous metals by dealloying in citric acid

Show Author's information Hongjie XuShujie PangYu JinTao Zhang( )
School of Materials Science and EngineeringBeihang UniversityBeijing100191China

Abstract

A general method is proposed to synthesize ultrafine nanoporous Cu, Ag, and Ni with novel sponge-like morphologies, high porosities, and large surface areas. The materials are produced by dealloying Mg65M25Y10 (M = Cu, Ag, and Ni) metallic glasses in citric acid. Citric acid played a key role due to its capping effect, which reduced the surface diffusion of metals. A structural model consistent with the sponge-like morphology was constructed to calculate the porosity and the surface area. The mechanism of the dealloying process in citric acid, involving ligament formation and coarsening, was illustrated. The mechanism was capable of explaining the experimental trends of dealloying, especially the morphology. A glucose sensor, which can be further developed into a high-precision real-time glucose monitor for medical use, was constructed using sponge-like nanoporous copper. Our findings are not only relevant to understanding the dealloying mechanism of metallic glasses, but also provide promising materials for multiple applications.

Keywords: metallic glasses, surface diffusion, sponge-like nanoporous metals, citric acid, ultrafine structure

References(48)

1

Chen, L. Y.; Fujita, T.; Ding, Y.; Chen, M. W. A three- dimensional gold-decorated nanoporous copper core–shell composite for electrocatalysis and nonenzymatic biosensing. Adv. Funct. Mater. 2010, 20, 2279–2285.

2

Xu, C. X.; Wang, L. Q.; Wang, R. Y.; Wang, K.; Zhang, Y.; Tian, F.; Ding, Y. Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance. Adv. Mater. 2009, 21, 2165–2169.

3

Gu, J.; Lan, G. X.; Jiang, Y. Y.; Xu, Y. S.; Zhu, W.; Jin, C. H.; Zhang, Y. W. Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Res. 2015, 8, 1480–1496.

4

Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365–1372.

5

Li, R.; Liu, X. J.; Wang, H.; Wu, Y.; Chu, X. M.; Lu, Z. P. Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering. Corros. Sci. 2014, 84, 159–164.

6

Kramer, D.; Viswanath, R. N.; Weissmuller, J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett. 2004, 4, 793–796.

7

Chen, L. Y.; Yu, J. S.; Fujita, T.; Chen, M. W. Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 2009, 19, 1221–1226.

8

Qiu, H. J.; Kang, J. L.; Liu, P.; Hirata, A.; Fujita, T.; Chen, M. W. Fabrication of large-scale nanoporous nickel with a tunable pore size for energy storage. J. Power Sources 2014, 247, 896–905.

9

Pugh, D. V.; Durson, A.; Corcoran, S. G. Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25. J. Mater. Res. 2003, 18, 216–221.

10

Thorp, J. C.; Sieradzki, K.; Tang, L.; Crozier, P. A.; Misra, A.; Nastasi, M.; Mitlin, D.; Picraux, S. T. Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSi1−x. Appl. Phys. Lett. 2006, 88, 033110.

11

Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous gold leaf: "Ancient Technology". Adv. Mater. 2004, 16, 1897–1900.

12

Qian, L. H.; Chen, M. W. Ultrafine nanoporous gold by low- temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 2007, 91, 083105.

13

Wang, K.; Weissmuller, J. Composites of nanoporous gold and polymer. Adv. Mater. 2013, 25, 1280–1284.

14

Hakamada, M.; Nakano, H.; Furukawa, T.; Takahashi, M.; Mabuchi, M. Hydrogen storage properties of nanoporous palladium fabricated by dealloying. J. Phys. Chem. C 2010, 114, 868–873.

15

Zhang, M.; Jorge Junior, A. M.; Pang, S. J.; Zhang, T.; Yavari, A. R. Fabrication of nanoporous silver with open pores. Scripta Mater. 2015, 100, 21–23.

16

Aburada, T.; Fitz-Gerald, J. M.; Scully, J. R. Synthesis of nanoporous copper by dealloying of Al-Cu-Mg amorphous alloys in acidic solution: The effect of nickel. Corros. Sci. 2011, 53, 1627–1632.

17

Li, J.; Jiang, H. W.; Yu, N.; Xu, C. X.; Geng, H. R. Fabrication and characterization of bulk nanoporous copper by dealloying Al–Cu alloy slices. Corros. Sci. 2015, 90, 216–222.

18

Tuan, N. T.; Park, J.; Lee, J.; Gwak, J.; Lee, D. Synthesis of nanoporous Cu films by dealloying of electrochemically deposited Cu–Zn alloy films. Corros. Sci. 2014, 80, 7–11.

19

Sun, L.; Chien, C. -L.; Searson, P. C. Fabrication of nanoporous nickel by electrochemical dealloying. Chem. Mater. 2004, 16, 3125–3129.

20

Hakamada, M.; Mabuchi, M. Preparation of nanoporous Ni and Ni–Cu by dealloying of rolled Ni–Mn and Ni–Cu–Mn alloys. J. Alloy Compd. 2009, 485, 583–587.

21

Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

22

Erlebacher, J.; Sieradzki, K. Pattern formation during dealloying. Scripta Mater. 2003, 49, 991–996.

23

Erlebacher, J. An atomistic description of dealloying: Porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 2004, 151, C614–C626.

24

Luo, X. K.; Li, R.; Liu, Z. Q.; Huang, L.; Shi, M. J.; Xu, T.; Zhang, T. Three-dimensional nanoporous copper with high surface area by dealloying Mg–Cu–Y metallic glasses. Mater. Lett. 2012, 76, 96–99.

25

Luo, X. K.; Li, R.; Huang, L.; Zhang, T. Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses. Corros. Sci. 2013, 67, 100–108.

26

Biener, J.; Nyce, G. W.; Hodge, A. M.; Biener, M. M.; Hamza, A. V.; Maier, S. A. Nanoporous plasmonic metamaterials. Adv. Mater. 2008, 20, 1211–1217.

27

Erlebacher, J. Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys. Rev. Lett. 2011, 106, 225504.

28

Kilin, D. S.; Prezhdo, O. V.; Xia, Y. N. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chem. Phys. Lett. 2008, 458, 113–116.

29

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape- controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

30

Wang, J. Q.; Yu, P.; Bai, H. Y. Minor addition induced enhancement of strength of Mg-based bulk metallic glass. J. Non-Cryst. Solids 2008, 354, 5440–5443.

31

Parida, S.; Kramer, D.; Volkert, C. A.; Rösner, H.; Erlebacher, J.; Weissmüller, J. Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett. 2006, 97, 035504.

32

Ding, Y.; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc. 2003, 125, 7772–7773.

33

Alonso, C.; Salvarezza, R. C.; Vara, J. M.; Arvia, A. J. The surface diffusion of gold atoms on gold electrodes in acid solution and its dependence on the presence of foreign adsorbates. Electrochim. Acta 1990, 35, 1331–1336.

34

Andreason, G.; Nazzarro, M.; Ramirez, J.; Salvarezza, R. C.; Arvia, A. J. Kinetics of particle coarsening at gold electrode/ electrolyte solution interfaces followed by in situ scanning tunneling microscopy. J. Electrochem. Soc. 1996, 143, 466–471.

35

Seebauer, E. G.; Allen, C. E. Estimating surface diffusion coefficients. Prog. Surf. Sci. 1995, 49, 265–330.

36

Zhang, Q.; Zhang, Z. H. On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution. Phys. Chem. Chem. Phys. 2010, 12, 1453–1472.

37

Huang, T. -K.; Lin, K. -W.; Tung, S. -P.; Cheng, T. -M.; Chang, I. C.; Hsieh, Y. -Z.; Lee, C. -Y.; Chiu, H. -T. Glucose sensing by electrochemically grown copper nanobelt electrode. J. Electroanal. Chem. 2009, 636, 123–127.

38

Xu, Q.; Zhao, Y.; Xu, J. Z.; Zhu, J. -J. Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens. Actuators B: Chem. 2006, 114, 379–386.

39

Joo, S.; Park, S.; Chuang, T. D.; Kim, H. C. Integration of a nanoporous platinum thin film into a microfluidic system for non-enzymatic electrochemical glucose sensing. Anal. Sci. 2007, 23, 277–281.

40

Chou, C. -H.; Chen, J. -C.; Tai, C. -C.; Sun, I. W.; Zen, J. -M. A nonenzymatic glucose sensor using nanoporous platinum electrodes prepared by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid. Electroanalysis 2008, 20, 771–775.

41

Lee, Y. -J.; Park, D. -J.; Park, J. -Y.; Kim, Y. Fabrication and optimization of a nanoporous platinum electrode and a non- enzymatic glucose micro-sensor on silicon. Sensors 2008, 8, 6154–6164.

42

Xia, Y.; Huang, W.; Zheng, J. F.; Niu, Z. J.; Li, Z. L. Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens. Bioelectron. 2011, 26, 3555–3561.

43

Chen, L. Y.; Lang, X. Y.; Fujita, T.; Chen, M. W. Nanoporous gold for enzyme-free electrochemical glucose sensors. Scripta Mater. 2011, 65, 17–20.

44

Qiu, H. J.; Huang, X. R. Effects of Pt decoration on the electrocatalytic activity of nanoporous gold electrode toward glucose and its potential application for constructing a nonenzymatic glucose sensor. J. Electroanal. Chem. 2010, 643, 39–45.

45

Holt-Hindle, P.; Nigro, S.; Asmussen, M.; Chen, A. C. Amperometric glucose sensor based on platinum–iridium nanomaterials. Electrochem. Commun. 2008, 10, 1438–1441.

46

Sattayasamitsathit, S.; Thavarungkul, P.; Thammakhet, C.; Limbut, W.; Numnuam, A.; Buranachai, C.; Kanatharana, P. Fabrication of nanoporous copper film for electrochemical detection of glucose. Electroanalysis 2009, 21, 2371–2377.

47

Liu, A. H.; Geng, H. R.; Xu, C. X.; Qiu, H. J. A three- dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing. Anal. Chim. Acta 2011, 703, 172–178.

48

Zhao, Y. X.; Li, Y. P.; He, Z. Y.; Yan, Z. F. Facile preparation of Cu–Cu2O nanoporous nanoparticles as a potential catalyst for non-enzymatic glucose sensing. RSC Adv. 2013, 3, 2178–2181.

File
nr-9-8-2467_ESM.pdf (4.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 March 2016
Revised: 02 May 2016
Accepted: 04 May 2016
Published: 29 June 2016
Issue date: August 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51571005).

Return