Journal Home > Volume 9 , Issue 8

Capacitive deionization is an attractive approach to water desalination and treatment. To achieve efficient capacitative desalination, rationally designed electrodes with high specific capacitances, conductivities, and stabilities are necessary. Here we report the construction of a three-dimensional (3D) holey graphene hydrogel (HGH). This material contains abundant in-plane pores, offering efficient ion transport pathways. Furthermore, it forms a highly interconnected network of graphene sheets, providing efficient electron transport pathways, and its 3D hierarchical porous structure can provide a large specific surface area for the adsorption and storage of ions. Consequently, HGH serves as a binder-free electrode material with excellent electrical conductivity. Cyclic voltammetry (CV) measurements indicate that the optimized HGH can achieve specific capacitances of 358.4 F·g-1 in 6 M KOH solution and 148 F·g-1 in 0.5 M NaCl solution. Because of these high capacitances, HGH has a desalination capacity as high as 26.8 mg·g-1 (applied potential: 1.2 V; initial NaCl concentration: ~5, 000 mg·L-1).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination

Show Author's information Weiqing Kong1Xidong Duan1Yongjie Ge1Hongtao Liu2Jiawen Hu1( )Xiangfeng Duan1,3( )
State Key Laboratory for Chemo/Biosensing and Chemometrics Department of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
College of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China
Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90095USA

Abstract

Capacitive deionization is an attractive approach to water desalination and treatment. To achieve efficient capacitative desalination, rationally designed electrodes with high specific capacitances, conductivities, and stabilities are necessary. Here we report the construction of a three-dimensional (3D) holey graphene hydrogel (HGH). This material contains abundant in-plane pores, offering efficient ion transport pathways. Furthermore, it forms a highly interconnected network of graphene sheets, providing efficient electron transport pathways, and its 3D hierarchical porous structure can provide a large specific surface area for the adsorption and storage of ions. Consequently, HGH serves as a binder-free electrode material with excellent electrical conductivity. Cyclic voltammetry (CV) measurements indicate that the optimized HGH can achieve specific capacitances of 358.4 F·g-1 in 6 M KOH solution and 148 F·g-1 in 0.5 M NaCl solution. Because of these high capacitances, HGH has a desalination capacity as high as 26.8 mg·g-1 (applied potential: 1.2 V; initial NaCl concentration: ~5, 000 mg·L-1).

Keywords: desalination, capacitive deionization, electrochemical capacitor, graphene hydrogel (GH), in-plane pore

References(41)

1

Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.

2

Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.

3

Gabitto, J.; Tsouris, C. Volume averaging study of the capacitive deionization process in homogeneous porous media. Transport Porous Med. 2015, 109, 61–80.

4

Kim, S. J.; Ko, S. H.; Kang, K. H.; Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5, 297–301.

5

Wang, C. M.; Song, H. O.; Zhang, Q. X.; Wang, B. X.; Li, A. M. Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration. Desalination 2015, 365, 407–415.

6

Yeh, C. L.; Hsi, H. C.; Li, K. C.; Hou, C. H. Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination 2015, 367, 60–68.

7

Semiat, R. Energy issues in desalination processes. Environ. Sci. Technol. 2008, 42, 8193–8201.

8

El-Deen, A. G.; Barakat, N. A. M.; Kim, H. Y. Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 2014, 344, 289–298.

9

Biesheuvel, P. M.; Porada, S.; Levi, M.; Bazant, M. Z. Attractive forces in microporous carbon electrodes for capacitive deionization. J. Solid State Electr. 2014, 18, 1365–1376.

10

Laxman, K.; Myint, M. T. Z.; Khan, R.; Pervez, T.; Dutta, J. Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water. Desalination 2015, 359, 64–70.

11

Huang, Z. H.; Wang, M.; Wang, L.; Kang, F. Y. Relation between the charge efficiency of activated carbon fiber and its desalination performance. Langmuir 2012, 28, 5079–5084.

12

Choi, J. H. Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Sep. Purif. Technol. 2010, 70, 362–366.

13

Jung, H. H.; Hwang, S. W.; Hyun, S. H.; Lee, K. H.; Kim, G. T. Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying. Desalination 2007, 216, 377–385.

14

El-Deen, A. G.; Barakat, N. A. M.; Khalil, K. A.; Kim, H. Y. Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process. New J. Chem. 2014, 38, 198–205.

15

Ying, T. Y.; Yang, K. L.; Yiacoumi, S.; Tsouris, C. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. J. Colloid Interface Sci. 2002, 250, 18–27.

16

Hou, C. H.; Liu, N. L.; Hsu, H. L.; Den, W. Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization. Sep. Purif. Technol. 2014, 130, 7–14.

17

Zou, L. D.; Li, L. X.; Song, H. H.; Morris, G. Using mesoporous carbon electrodes for brackish water desalination. Water Res. 2008, 42, 2340–2348.

18

Tsai, Y. C.; Doong, R. A. Activation of hierarchically ordered mesoporous carbons for enhanced capacitive deionization application. Synth. Met. 2015, 205, 48–57.

19

Nie, C. Y.; Pan, L. K.; Liu, Y.; Li, H. B.; Chen, T. Q.; Lu, T.; Sun, Z. Electrophoretic deposition of carbon nanotubes– polyacrylic acid composite film electrode for capacitive deionization. Electrochim. Acta 2012, 66, 106–109.

20

El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

21

Li, H. B.; Zou, L. D.; Pan, L. K.; Sun, Z. Novel graphene- like electrodes for capacitive deionization. Environ. Sci. Technol. 2010, 44, 8692–8697.

22

Li, Z.; Liu, Z.; Sun, H. Y.; Gao, C. Superstructured assembly of nanocarbons: Fullerenes, nanotubes, and graphene. Chem. Rev. 2015, 115, 7046–7117.

23

Li, H. B.; Lu, T.; Pan, L. K.; Zhang, Y. P.; Sun, Z. Electrosorption behavior of graphene in NaCl solutions. J. Mater. Chem. 2009, 19, 6773–6779.

24

Li, H. B.; Pan, L. K.; Lu, T.; Zhan, Y. K.; Nie, C. Y.; Sun, Z. A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. J. Electroanal. Chem. 2011, 653, 40–44.

25

Yin, H. J.; Zhao, S. L.; Wan, J. W.; Tang, H. J.; Chang, L.; He, L. C.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Three- dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv. Mater. 2013, 25, 6270–6276.

26

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

27

Wang, H.; Zhang, D. S.; Yan, T. T.; Wen, X. R.; Zhang, J. P.; Shi, L. Y.; Zhong, Q. D. Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. J. Mater. Chem. A 2013, 1, 11778–11789.

28

Wen, X. R.; Zhang, D. S.; Yan, T. T.; Zhang, J. P.; Shi, L. Y. Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. J. Mater. Chem. A 2013, 1, 12334– 12344.

29

Xu, X. T.; Pan, L. K.; Liu, Y.; Lu, T.; Sun, Z.; Chua, D. H. C. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Sci. Rep. 2015, 5, 8458.

30

Xu, X. T.; Sun, Z.; Chua, D. H. C.; Pan, L. K. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Sci. Rep. 2015, 5, 11225.

31

Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.

32

Liu, Y.; Zhang, Y.; Ma, G. H.; Wang, Z.; Liu, K. Y.; Liu, H. T. Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim. Acta 2013, 88, 519–525.

33

McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

34

Xu, Y. X.; Chen, C. Y.; Zhao, Z. P.; Lin, Z. Y.; Lee, C.; Xu, X.; Wang, C.; Huang, Y.; Shakir, M. I.; Duan, X. F. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 2015, 15, 4605–4610.

35

Yan, J.; Wei, T.; Shao, B.; Ma, F. Q.; Fan, Z. J.; Zhang, M. L.; Zheng, C.; Shang, Y. C.; Qian, W. Z.; Wei, F. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 2010, 48, 1731–1737.

36

Yang, X. W.; Zhu, J. W.; Qiu, L.; Li, D. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Adv. Mater. 2011, 23, 2833–2838.

37

Brun, N.; Prabaharan, S. R. S.; Surcin, C.; Morcrette, M.; Deleuze, H.; Birot, M.; Babot, O.; Achard, M. F.; Backov, R. Design of hierarchical porous carbonaceous foams from a dual-template approach and their use as electrochemical capacitor and Li ion battery negative electrodes. J. Phys. Chem. C 2012, 116, 1408–1421.

38

Zhang, D. S.; Yan, T. T.; Shi, L. Y.; Peng, Z.; Wen, X. R.; Zhang, J. P. Enhanced capacitive deionization performance of graphene/carbon nanotube composites. J. Mater. Chem. 2012, 22, 14696–14704.

39

Gao, P.; Martin, C. R. Voltage charging enhances ionic conductivity in gold nanotube membranes. ACS Nano 2014, 8, 8266–8272.

40

Wimalasiri, Y.; Mossad, M.; Zou, L. D. Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization. Desalination 2015, 357, 178–188.

41

Shi, W. H.; Li, H. B.; Cao, X. H.; Leong, Z. Y.; Zhang, J.; Chen, T. P.; Zhang, H.; Yang, H. Y. Ultrahigh performance of novel capacitive deionization electrodes based on a three-dimensional graphene architecture with nanopores. Sci. Rep. 2016, 6, 18966.

File
12274_2016_1132_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 February 2016
Revised: 26 April 2016
Accepted: 04 May 2016
Published: 04 July 2016
Issue date: August 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was finally supported by the National Natural Science Foundation of China (No. 61528403).

Return