Journal Home > Volume 9 , Issue 8

In recent decades, magnetic iron nanoparticles (NPs) have attracted much attention due to properties such as superparamagnetism, high surface area, large surface-to-volume ratio, and easy separation under external magnetic fields. Therefore, magnetic iron oxides have potential for use in numerous applications, including magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, drug delivery, hyperthermia, and cell separation. This review provides an updated and integrated focus on the fabrication and characterization of suitable magnetic iron NPs for biotechnological applications. The possible perspective and some challenges in the further development of these NPs are also discussed.


menu
Abstract
Full text
Outline
About this article

A biotechnological perspective on the application of iron oxide nanoparticles

Show Author's information Farnaz Assa1Hoda Jafarizadeh-Malmiri1( )Hossein Ajamein2Navideh Anarjan3Hamideh Vaghari1Zahra Sayyar1Aydin Berenjian4( )
Faculty of Chemical EngineeringSahand University of TechnologyTabriz5331811111Iran
Department of Chemical EngineeringIlkhchi BranchIslamic Azad UniversityIlkhchi5358114418Iran
Department of Chemical EngineeringTabriz BranchIslamic Azad UniversityTabriz5157944533Iran
School of EngineeringFaculty of Science and EngineeringUniversity of WaikatoHamilton3240New Zealand

Abstract

In recent decades, magnetic iron nanoparticles (NPs) have attracted much attention due to properties such as superparamagnetism, high surface area, large surface-to-volume ratio, and easy separation under external magnetic fields. Therefore, magnetic iron oxides have potential for use in numerous applications, including magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, drug delivery, hyperthermia, and cell separation. This review provides an updated and integrated focus on the fabrication and characterization of suitable magnetic iron NPs for biotechnological applications. The possible perspective and some challenges in the further development of these NPs are also discussed.

Keywords: surface modification, iron oxide nanoparticle, superparamagnetic, biotechnology

References(180)

1

Chow, A. Y. Cell cycle control by oncogenes and tumor suppressors: Driving the transformation of normal cells into cancerous cells. Nat. Educ. 2010, 3, 7.

2

Alharbi, K. K.; Al-sheikh, Y. A. Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J. Biol. Sci. 2014, 21, 109–117.

3

Naeimi, H.; Nazifi, Z. S.; Amininezhad, S. M. Preparation of Fe3O4 encapsulated-silica sulfonic acid nanoparticles and study of their in vitro antimicrobial activity. J. Photochem. Photobiol. B 2015, 149, 180–188.

4

Shamili, K.; Rajesh, E. M.; Rajendran, R.; Madhan Shankar, S. R.; Elango, M.; Abitha Devi, N. Colloidal stability and monodispersible magnetic iron oxide nanoparticles in biotechnology application. Int. J. Nanosci. 2013, 12, 1330002.

5

Issa, B.; Obaidat, I. M.; Albiss, B. A.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013, 14, 21266– 21305.

6

Callister, W. D.; Rethwisch, D. G. Materials Science and Engineering: An Introduction; Wiley: New York, 2007.

7

Dobrzański, L. A.; Drak, M.; Ziębowicz, B. Materials with specific magnetic properties. J. Achiev. Mater. Manuf. Eng. 2006, 17, 37–40.

8

Shukla, S.; Jadaun, A.; Arora, V.; Sinha, R. K.; Biyani, N.; Jain, V. K. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxic. Rep. 2015, 2, 27–39.

9

Shubayev, V. I.; Pisanic, T. R., Ⅱ; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 2009, 61, 467–477.

10

Hoskins, C.; Wang, L. J.; Cheng, W. P.; Cuschieri, A. Dilemmas in the reliable estimation of the in-vitro cell viability in magnetic nanoparticle engineering: Which tests and what protocols? Nanoscale Res. Lett. 2012, 7, 77.

11

Hoskins, C.; Cuschieri, A.; Wang, L. J. The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism. J. Nanobiotechnology 2012, 10, 15.

12

Mak, S. -Y.; Chen, D. -H. Binding and sulfonation of poly(acrylic acid) on iron oxide nanoparticles: A novel, magnetic, strong acid cation nano-adsorbent. Macromol. Rapid Commun. 2005, 26, 1567–1571.

13

Li, L.; Mak, K. Y.; Shi, J.; Leung, C. H.; Wong, C. M.; Leung, C. W.; Mak, C. S. K.; Chan, K. Y.; Chan, N. M. M.; Wu, E. X. et al. Sterilization on dextran-coated iron oxide nanoparticles: Effects of autoclaving, filtration, UV irradiation, and ethanol treatment. Microelectron. Eng. 2013, 111, 310–313.

14

Wang, X. L.; Zhou, L. Z.; Ma, Y. J.; Li, X.; Gu, H. C. Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection. Nano Res. 2009, 2, 365–372.

15

Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W. H. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir 2001, 17, 2900–2906.

16

Mendes, R. G.; Koch, B.; Bachmatiuk, A.; El-Gendy, A. A.; Krupskaya, Y.; Springer, A.; Klingeler, R.; Schmidt, O.; Büchner, B.; Sanchez, S. et al. Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. Biochim. Biophys. Acta 2014, 1840, 160–169.

17

Mandal, M.; Kundu, S.; Ghosh, S. K.; Panigrahi, S.; Sau, T. K.; Yusuf, S. M.; Pal, T. Magnetite nanoparticles with tunable gold or silver shell. J. Colloid Interface Sci. 2005, 286, 187–194.

18

Machala, L.; Tuček, J.; Zbořil, R. Polymorphous transformations of nanometric iron(Ⅲ) oxide: A review. Chem. Mater. 2011, 23, 3255–3272.

19

Tuček, J.; Zbořil, R.; Namai, A.; Ohkoshi, S. -I. ε-Fe2O3: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem. Mater. 2010, 22, 6483–6505.

20

Tuček, J.; Kemp, K. C.; Kim, K. S.; Zbořil, R. Iron-oxide- supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 2014, 8, 7571–7612.

21

Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878.

22

Philosof-Mazor, L.; Dakwar, G. R.; Popov, M.; Kolusheva, S.; Shames, A.; Linder, C.; Greenberg, S.; Heldman, E.; Stepensky, D.; Jelinek, R. Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: New vehicles for magnetically targeted drug delivery. Int. J. Pharm. 2013, 450, 241–249.

23

Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167–R181.

24

Hilger, I.; Hergt, R.; Kaiser, W. A. Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proc. Nanobiotechnol. 2005, 152, 33–39.

25

Hergt, R.; Dutz, S.; Müller, R.; Zeisberger, M. Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. J. Phys. : Condens. Matter. 2006, 18, S2919–S2934.

26

Gneveckow, U.; Jordan, A.; Scholz, R.; Cho, C. H.; Feuβner, A.; Eckelt, L.; Wust, P. Magnetic force nanotherapy: Feasibility and tolerance in a trial with residual tumors. In Proceedings 22nd Annual Meeting of the European Society for Hyperthermic Oncology, Graz, Austria, 2005, pp 29–30.

27

Chen, Y.; Chen, B. -A. Application and development of magnetic iron oxide nanoparticles in tumor targeted therapy. Chin. J. Cancer 2010, 29, 118–122.

28

Liu, Y. L.; Tan, J. F.; Thomas, A.; Ouyang, D.; Muzykantov, V. R. The shape of things to come: Importance of design in nanotechnology for drug delivery. Ther. Deliv. 2012, 3, 181–194.

29

Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K. M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607.

30

Khanna, V. K. Targeted delivery of nanomedicines. ISRN Pharmacol. 2012, 2012, 571394.

31

Wu, Z. H.; Yang, S. L.; Wu, W. Shape control of inorganic nanoparticles from solution. Nanoscale 2016, 8, 1237–1259.

32

Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 44.

33

Hasany, S. F.; Ahmed, I.; Rajan, J.; Rehman, A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol. 2012, 2, 148–158.

34

Guardia, P.; Pérez, N.; Labarta, A.; Batlle, X. Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir 2010, 26, 5843–5847.

35

Filippousi, M.; Angelakeris, M.; Katsikini, M.; Paloura, E.; Efthimiopoulos, I.; Wang, Y. J.; Zamboulis, D.; Van Tendeloo, G. Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles. J. Phys. Chem. C 2014, 118, 16209–16217.

36

Ray, J. R.; Wan, W.; Gilbert, B.; Jun, Y. -S. Effects of formation conditions on the physicochemical properties, aggregation, and phase transformation of iron oxide nanoparticles. Langmuir 2013, 29, 1069–1076.

37

Qiao, R. R.; Yang, C. H.; Gao, M. Y. Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J. Mater. Chem. 2009, 19, 6274–6293.

38

Wu, W.; Jiang, C. Z.; Roy, V. A. L. Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 2015, 7, 38–58.

39

Yoo, J. Y.; Kim, Y.; Ko, Y. S. Ring-opening polymerization behavior of L-lactide catalyzed by aluminum alkyl catalysts. J. Ind. Eng. Chem. 2013, 19, 1137–1143.

40

Levy, L.; Sahoo, Y.; Kim, K. -S.; Bergey, E. J.; Prasad, P. N. Nanochemistry: Synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 2002, 14, 3715–3721.

41

Si, S.; Kotal, A.; Mandal, T. K.; Giri, S.; Nakamura, H.; Kohara, T. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem. Mater. 2004, 16, 3489–3496.

42

Hong, S. K.; Ma, J. Y.; Kim, J. -C. Preparation of iron oxide nanoparticles within monoolein cubic phase. J. Ind. Eng. Chem. 2012, 18, 1977–1982.

43

Yoffe, S.; Leshuk, T.; Everett, P.; Gu, F. Superparamagnetic iron oxide nanoparticles (SPIONs): Synthesis and surface modification techniques for use with MRI and other biomedical applications. Curr. Pharm. Des. 2013, 19, 493–509.

44

Kumar, R. V.; Koltypin, Y.; Xu, X. N.; Yeshurun, Y.; Gedanken, A.; Felner, I. Fabrication of magnetite nanorods by ultrasound irradiation. J. Appl. Phys. 2001, 89, 6324–6328.

45

Vijayakumar, R.; Koltypin, Y.; Felner, I.; Gedanken, A. Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater. Sci. Eng. A 2000, 286, 101–105.

46

Dang, F.; Enomoto, N.; Hojo, J.; Enpuku, K. A novel method to synthesize monodispersed magnetite nanoparticles. Chem. Lett. 2008, 37, 530–531.

47

Wu, W.; He, Q. G.; Jiang, C. Z. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008, 3, 397–415.

48

Pascal, C.; Pascal, J. L.; Favier, F.; Elidrissi Moubtassim, M. L.; Payen, C. Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem. Mater. 1999, 11, 141–147.

49

Khollam, Y. B.; Dhage, S. R.; Potdar, H. S.; Deshpande, S. B.; Bakare, P. P.; Kulkarni, S. D.; Date, S. K. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater. Lett. 2002, 56, 571–577.

50

Gržeta, B.; Ristić, M.; Nowik, I.; Musić, S. Formation of nanocrystalline magnetite by thermal decomposition of iron choline citrate. J. Alloys Compd. 2002, 334, 304–312.

51

Narasimhan, B. R. V.; Prabhakar, S.; Manohar, P.; Gnanam, F. D. Synthesis of gamma ferric oxide by direct thermal decomposition of ferrous carbonate. Mater. Lett. 2002, 52, 295–300.

52

Yu, W. W.; Falkner, J. C.; Yavuz, C. T.; Colvin, V. L. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 2004, 2306–2307.

53

Liu, X. -M.; Kim, J. -K. Solvothermal synthesis and magnetic properties of magnetite nanoplatelets. Mater. Lett. 2009, 63, 428–430.

54

Maity, D.; Choo, S. -G.; Yi, J. B.; Ding, J.; Xue, J. M. Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J. Magn. Magn. Mater. 2009, 321, 1256–1259.

55

Amemiya, Y.; Arakaki, A.; Staniland, S. S.; Tanaka, T.; Matsunaga, T. Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 2007, 28, 5381–5389.

56

Philipse, A. P.; Maas, D. Magnetic colloids from magnetotactic bacteria: Chain formation and colloidal stability. Langmuir 2002, 18, 9977–9984.

57

Prozorov, T.; Mallapragada, S. K.; Narasimhan, B.; Wang, L.; Palo, P.; Nilsen-Hamilton, M.; Williams, T. J.; Bazylinski, D. A.; Prozorov, R.; Canfield, P. C. Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater. 2007, 17, 951–957.

58

Bharde, A. A.; Parikh, R. Y.; Baidakova, M.; Jouen, S.; Hannoyer, B.; Enoki, T.; Prasad, B. L. V.; Shouche, Y. S.; Ogale, S.; Sastry, M. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 2008, 24, 5787–5794.

59

Bharde, A.; Rautaray, D.; Bansal, V.; Ahmad, A.; Sarkar, I.; Yusuf, S. M.; Sanyal, M.; Sastry, M. Extracellular biosynthesis of magnetite using fungi. Small 2006, 2, 135–141.

60

Coker, V. S.; Telling, N. D.; van der Laan, G.; Pattrick, R. A. D.; Pearce, C. I.; Arenholz, E.; Tuna, F.; Winpenny, R. E. P.; Lloyd, J. R. Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties. ACS Nano 2009, 3, 1922–1928.

61

Itoh, H.; Sugimoto, T. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J. Colloid Interface Sci. 2003, 265, 283–295.

62

Kim, D.; Lee, N.; Park, M.; Kim, B. H.; An, K.; Hyeon, T. Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 2009, 131, 454–455.

63

Peng, Z. M.; Wu, M. Z.; Xiong, Y.; Wang, J.; Chen, Q. W. Synthesis of magnetite nanorods through reduction of β-FeOOH. Chem. Lett. 2005, 34, 636–637.

64

Jia, C. -J.; Sun, L. -D.; Luo, F.; Han, X. -D.; Heyderman, L. J.; Yan, Z. -G.; Yan, C. -H.; Zheng, K.; Zhang, Z.; Takano, M. et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 2008, 130, 16968– 16977.

65

Wu, W.; Wu, Z. H.; Yu, T.; Jiang, C. Z.; Kim, W. -S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Tech. Adv. Mater. 2015, 16, 023501.

66

Dias, A. M. G. C.; Hussain, A.; Marcos, A. S.; Roque, A. C. A. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol. Adv. 2011, 29, 142–155.

67

Kim, S.; Kim, J. -H.; Jeon, O.; Kwon, I. C.; Park, K. Engineered polymers for advanced drug delivery. Eur. J. Pharm. Biopharm. 2009, 71, 420–430.

68

Kim, J. -E.; Shin, J. -Y.; Cho, M. -H. Magnetic nanoparticles: An update of application for drug delivery and possible toxic effects. Arch. Toxicol. 2012, 86, 685–700.

69

Xu, J. -K.; Zhang, F. -F.; Sun, J. -J.; Sheng, J.; Wang, F.; Sun, M. Bio and nanomaterials based on Fe3O4. Molecules 2014, 19, 21506–21528.

70

Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 24–46.

71

Wang, Y.; Wong, J. F.; Teng, X. W.; Lin, X. Z.; Yang, H. "Pulling" nanoparticles into water: Phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of α-cyclodextrin. Nano Lett. 2003, 3, 1555–1559.

72

Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A. L.; Keller, S.; Rädler, J.; Natile, G.; Parak, W. J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 2004, 4, 703–707.

73

Gupta, A. K.; Wells, S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci. 2004, 3, 66–73.

74

Sen, T.; Magdassi, S.; Nizri, G.; Bruce, I. J. Dispersion of magnetic nanoparticles in suspension. Micro Nano Lett. 2006, 1, 39–42.

75

Euliss, L. E.; Grancharov, S. G.; O'Brien, S.; Deming, T. J.; Stucky, G. D.; Murray, C. B.; Held, G. A. Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett. 2003, 3, 1489–1493.

76

Park, K. C.; Wang, F.; Morimoto, S.; Fujishige, M.; Morisako, A.; Liu, X. X.; Kim, Y. J.; Jung, Y. C.; Jang, I. Y.; Endo, M. One pot synthesis of iron oxide-carbon core-shell particles in supercritical water. Mater. Res. Bull. 2009, 44, 1443–1450.

77

Wang, Y.; Teng, X. W.; Wang, J. -S.; Yang, H. Solvent- free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core–shell nanoparticles. Nano Lett. 2003, 3, 789–793.

78

Li, G. F.; Fan, J. D.; Jiang, R.; Gao, Y. Cross-linking the linear polymeric chains in the ATRP synthesis of iron oxide/polystyrene core/shell nanoparticles. Chem. Mater. 2004, 16, 1835–1837.

79

Wan, S. R.; Zheng, Y. E.; Liu, Y. Q.; Yan, H. S.; Liu, K. L. Fe3O4 nanoparticles coated with homopolymers of glycerol mono(meth)acrylate and their block copolymers. J. Mater. Chem. 2005, 15, 3424–3430.

80

Harris, L. A.; Goff, J. D.; Carmichael, A. Y.; Riffle, J. S.; Harburn, J. J.; St. Pierre, T. G.; Saunders, M. Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem. Mater. 2003, 15, 1367–1377.

81

Gómez-Lopera, S. A.; Plaza, R. C.; Delgado, A. V. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Colloid Interface Sci. 2001, 240, 40–47.

82

Voit, W.; Kim, D. K.; Zapka, W.; Muhammed, M.; Rao, K. V. Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids. In MRS Proceedings: Synthesis, Functional Properties and Applications of Nanostructures, San Francisco, USA, 2001.

83

Sen, T.; Bruce, I. J. Mesoporous silica–magnetite nanocomposites: Fabrication, characterisation and applications in biosciences. Micropor. Mesopor. Mater. 2009, 120, 246–251.

84

Maleki, H.; Simchi, A.; Imani, M.; Costa, B. F. O. Size- controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. J. Magn. Magn. Mater. 2012, 324, 3997–4005.

85

Ladj, R.; Bitar, A.; Eissa, M.; Mugnier, Y.; Le Dantec, R.; Fessi, H.; Elaissari, A. Individual inorganic nanoparticles: Preparation, functionalization and in vitro biomedical diagnostic applications. J. Mater. Chem. B 2013, 1, 1381– 1396.

86

Huber, D. L. Synthesis, properties, and applications of iron nanoparticles. Small 2005, 1, 482–501.

87

Da Dalt, S.; Panta, P. C.; Toniolo, J. C. Nanomagnetic materials. In Nanostructured Materials for Engineering Applications. Bergmann, C.; de Andrade, M., Eds.; Springer: Berlin Heidelberg, 2011; pp 23–39.

88

Faraji, M.; Yamini, Y.; Rezaee, M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc. 2010, 7, 1–37.

89

Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd Ed.; Wiley-VCH: Weinheim, 2003.

DOI
90

Lam, U. T.; Mammucari, R.; Suzuki, K.; Foster, N. R. Processing of iron oxide nanoparticles by supercritical fluids. Ind. Eng. Chem. Res. 2008, 47, 599–614.

91

Mody, V. V.; Siwale, R.; Singh, A.; Mody, H. R. Introduction to metallic nanoparticles. J. Pharm. Bioall. Sci. 2010, 2, 282–289.

92

Gawande, M. B.; Branco, P. S.; Varma, R. S. Nano- magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393.

93

Amirkhani, L.; Moghaddas, J; Jafarizadeh-Malmiri, H. Candida rugosalipase immobilization on magnetic silica aerogel nanodispersion. RSC Adv. 2016, 6, 12676–12678.

94

Xu, J. K.; Sun, J. J.; Wang, Y. J.; Sheng, J.; Wang, F.; Sun, M. Application of iron magnetic nanoparticles in protein immobilization. Molecules 2014, 19, 11465–11486.

95

Cao, M.; Li, Z. H.; Wang, J. L.; Ge, W. P.; Yue, T. L.; Li, R. H.; Colvin, V. L.; Yu, W. W. Food related applications of magnetic iron oxide nanoparticles: Enzyme immobilization, protein purification, and food analysis. Trends Food Sci. Tech. 2012, 27, 47–56.

96

Li, S.; Yang, X. F.; Yang, S.; Zhu, M. Z.; Wang, X. N. Technology prospecting on enzymes: Application, marketing and engineering. Comput. Struct. Biotechnol. J. 2012, 2, e201209017.

97

Singh, R. K.; Tiwari, M. K.; Singh, R.; Lee, J. -K. From protein engineering to immobilization: Promising strategies for the upgrade of industrial enzymes. Int. J. Mol. Sci. 2013, 14, 1232–1277.

98

Jafarizadeh-Malmiri, H.; Ghaz-Jahanian, M. A.; Berenjian, A. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am. J. Biochem. Biotechnol. 2012, 8, 203–219.

99

Xu, P.; Zeng, G. M.; Huang, D. L.; Feng, C. L.; Hu, S.; Zhao, M. H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G. X. et al. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 2012, 424, 1–10.

100

Tang, W. -W.; Zeng, G. -M.; Gong, J. -L.; Liang, J.; Xu, P.; Zhang, C.; Huang, B. -B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci. Total Environ. 2014, 468–469, 1014–1027.

101

Xu, P.; Zeng, G. M.; Huang, D. L.; Lai, C.; Zhao, M. H.; Wei, Z.; Li, N. J.; Huang, C.; Xie, G. X. Adsorption of Pb(Ⅱ) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem. Eng. J. 2012, 203, 423–431.

102

Vaghari, H.; Jafarizadeh-Malmiri, H.; Mohammadlou, M.; Berenjian, A.; Anarjan, N.; Jafari, N.; Nasiri, S. Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol. Lett. 2016, 38, 223–233.

103

Colombié, S.; Gaunand, A.; Lindet, B. Lysozyme inactivation under mechanical stirring: Effect of physical and molecular interfaces. Enzyme Microb. Technol. 2001, 28, 820–826.

104

Wu, H.; Fan, Y.; Sheng, J.; Sui, S. -F. Induction of changes in the secondary structure of globular proteins by a hydrophobic surface. Eur. Biophys. J. 1993, 22, 201–205.

105

Liu, Y.; Jia, S. Y.; Wu, Q.; Ran, J. Y.; Zhang, W.; Wu, S. H. Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catal. Commun. 2011, 12, 717–720.

106

Zhao, G. X.; Wen, T.; Yang, X.; Yang, S. B.; Liao, J. L.; Hu, J.; Shao, D. D.; Wang, X. K. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans. 2012, 41, 6182–6188.

107

Zong, P. F.; Wang, S. F.; Zhao, Y. L.; Wang, H.; Pan, H.; He, C. H. Synthesis and application of magnetic graphene/ iron oxides composite for the removal of U(VI) from aqueous solutions. Chem. Eng. J. 2013, 220, 45–52.

108

Rodrigo, G.; Gruvegård, M.; van Alstine, J. M. Antibody fragments and their purification by protein L affinity chromatography. Antibodies 2015, 4, 259–277.

109

Martínez-Maqueda, D.; Hernández-Ledesma, B.; Amigo, L.; Miralles, B.; Gómez-Ruiz, J. Extraction/fractionation techniques for proteins and peptides and protein digestion. In Proteomics in Foods. Toldrá, F.; Nollet, L. M. L., Eds.; Springer: New York, 2013; pp 21–50.

110

Ghotb, S. A.; Chamani, M.; Ahmadpanahi, H.; Sadeghi, A. A. Xylanase extraction from clarified rumen fluid by modified magnetic nano-particles. WALIA J. 2014, 30, 121–127.

111

Bucak, S.; Jones, D. A.; Laibinis, P. E.; Hatton, T. A. Protein separations using colloidal magnetic nanoparticles. Biotechnol. Prog. 2003, 19, 477–484.

112

Okoli, C.; Boutonnet, M.; Mariey, L.; Järås, S.; Rajarao, G. Application of magnetic iron oxide nanoparticles prepared from microemulsions for protein purification. J. Chem. Technol. Biotechnol. 2011, 86, 1386–1393.

113

Boutonnet, M.; Lögdberg, S.; Elm Svensson, E. Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr. Opin. Colloid Interface Sci. 2008, 13, 270–286.

114

Eriksson, S.; Nylén, U.; Rojas, S.; Boutonnet, M. Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl. Catal. A 2004, 265, 207–219.

115

Lu, A. -H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Edit. 2007, 46, 1222–1244.

116

Othman, M. N.; Abdullah, M. P.; Aziz, Y. F. A. Removal of aluminium from drinking water. Sains Malays. 2010, 39, 51–55.

117

Lindström, E. S.; Kamst-Van Agterveld, M. P.; Zwart, G. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 2005, 71, 8201–8206.

118

Lakshmanan, R.; Okoli, C.; Boutonnet, M.; Järås, S.; Rajarao, G. K. Effect of magnetic iron oxide nanoparticles in surface water treatment: Trace minerals and microbes. Bioresour. Technol. 2013, 129, 612–615.

119

Plante, M. -P.; Bérubé, È.; Bissonnette, L.; Bergeron, M. G.; Leclerc, M. Polythiophene biosensor for rapid detection of microbial particles in water. ACS Appl. Mater. Interfaces 2013, 5, 4544–4548.

120

Sahu, O. P.; Chaudhari, P. K. Review on chemical treatment of industrial waste water. J. Appl. Sci. Environ. Manage. 2013, 17, 241–257.

121

Kawahara, M.; Kato-Negishi, M. Link between aluminum and the pathogenesis of alzheimer's disease: The integration of the aluminum and amyloid cascade hypotheses. Int. J. Alzheimer's Dis. 2011, 2011, Article ID 276393.

122

White, B. R.; Stackhouse, B. T.; Holcombe, J. A. Magnetic γ-Fe2O3 nanoparticles coated with poly-L-cysteine for chelation of As(Ⅲ), Cu(Ⅱ), Cd(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ). J. Hazard. Mater. 2009, 161, 848–853.

123

Girginova, P. I.; Daniel-da-Silva, A. L.; Lopes, C. B.; Figueira, P.; Otero, M.; Amaral, V. S.; Pereira, E.; Trindade, T. Silica coated magnetite particles for magnetic removal of Hg2+ from water. J. Colloid Interface Sci. 2010, 345, 234–240.

124

Cheng, Z. L.; Tan, A. L. K.; Tao, Y.; Shan, D.; Ting, K. E.; Yin, X. J. Synthesis and characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater. Int. J. Photoenergy 2012, 2012, Article ID 608298.

125

Rahman, M. M.; Khan, S. B.; Jamal, A.; Faisal, M.; Aisiri, A. M. Iron Oxide Nanoparticles; InTech Open Access Publisher: Vienna, 2011.

DOI
126

Vashist, S. K.; Lam, E.; Hrapovic, S.; Male, K. B.; Luong, J. H. T. Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem. Rev. 2014, 114, 11083–11130.

127

Omidinia, E.; Shadjou, N.; Hasanzadeh, M. (Fe3O4)- graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine. Mater. Sci. Eng. C 2013, 33, 4624–4632.

128

Jaffrezic-Renault, N.; Martelet, C.; Chevolot, Y.; Cloarec, J. P. Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads. Sensors (Basel) 2007, 7, 589–614.

129

Hsing, I. M.; Xu, Y.; Zhao, W. T. Micro- and nano- magnetic particles for applications in biosensing. Electroanalysis 2007, 19, 755–768.

130

Stanciu, L.; Won, Y. H.; Ganesana, M.; Andreescu, S. Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors 2009, 9, 2976–2999.

131

Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends Anal. Chem. 2015, 72, 1–9.

132

Silva, A.; Silva-Freitas, É.; Carvalho, J.; Pontes, T.; Araújo-Neto, R.; Silva, K.; Carriço, A.; Egito, E. Magnetic Particles in Biotechnology: From Drug Targeting to Tissue Engineering; InTech Open Access Publisher: Vienna, 2012.

DOI
133

Varanda, L. C.; Júnior, M. J.; Júnior, W. B. Magnetic and multifunctional magnetic nanoparticles in nanomedicine: Challenges and trends in synthesis and surface engineering for diagnostic and therapy applications. In Biomedical Engineering, Trends in Materials Science. Laskovski, A. N., Eds.; InTech Open Accsess Publisher: Vienna, 2011; pp 397–424.

134

Amritkar, A. S.; Chaudhari, H. S.; Narkhede, D. A.; Jain, D. K.; den Baviskar, D. T. Nanotechnology for biomedical application. Int. J. Pharm. Sci. Rev. Res. 2011, 8, 45–53.

135

Medeiros, S. F.; Santos, A. M.; Fessi, H.; Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 2011, 403, 139–161.

136

Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M. A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 2015, 16, 8070–8101.

137

Huang, J.; Zhong, X. D.; Wang, L. Y.; Yang, L. L.; Mao, H. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2012, 2, 86–102.

138

Hervault, A.; Thanh, N. T. K. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 2014, 6, 11553–11573.

139

Kumar, C. S. S. R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 789–808.

140

Jalilian, A.; Panahifar, A.; Mahmoudi, M.; Akhlaghi, M.; Simchi, A. Preparation and biological evaluation of[67 Ga]-labeled-superparamagnetic nanoparticles in normal rats. Radiochim. Acta 2009, 97, 51–56.

141

Sailaja, A. K. Formulation of magnetic nanoparticles and their applications. Inov. J. Life Sci. 2013, 1, 6–9.

142

Khoee, S.; Bagheri, Y.; Hashemi, A. Composition controlled synthesis of PCL-PEG Janus nanoparticles: Magnetite nanoparticles prepared from one-pot photo-click reaction. Nanoscale 2015, 7, 4134–4148.

143

Unsoy, G.; Khodadust, R.; Yalcin, S.; Mutlu, P.; Gunduz, U. Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur. J. Pharm. Sci. 2014, 62, 243–250.

144

Ebrahiminezhad, A.; Varma, V.; Yang, S. Y.; Berenjian, A. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl. Microbiol. Biotechnol. 2016, 100, 173–180.

145

Felton, C.; Karmakar, A.; Gartia, Y.; Ramidi, P.; Biris, A. S.; Ghosh, A. Magnetic nanoparticles as contrast agents in biomedical imaging: Recent advances in iron- and manganese-based magnetic nanoparticles. Drug Metabol. Rev. 2014, 46, 142–154.

146

Ghaz-Jahanian, M. A.; Abbaspour-Aghdam, F.; Anarjan, N.; Berenjian, A.; Jafarizadeh-Malmiri, H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol. Biotechnol. 2015, 57, 201–218.

147

Assa, F.; Jafarizadeh-Malmiri, H.; Anarjan, N.; Berenjian, A.; Ghasemi, Y. Applications of chitosan nanoparticles in active biodegradable and sustainable food packaging. In Renewable Energy and Sustainable Development. Prabhakaran, R. T. D.; Kale, S. A.; Prabakar, K., Eds.; Nova Science Publishers, Inc. : New York, 2015; pp 227–244.

148

Najafi, S.; Pazhouhnia, Z.; Ahmadi, O.; Berenjian, A.; Jafarizadeh-Malmiri, H. Chitosan nanoparticles and their applications in drug delivery: A review. Curr. Res. Drug Discov. 2014, 1, 17–25.

149

Chen, J. -P.; Yang, P. -C.; Ma, Y. -H.; Wu, T. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohydr. Polym. 2011, 84, 364–372.

150

Yang, F.; Gu, Z. -X.; Jin, X.; Wang, H. -Y.; Gu, N. Magnetic microbubble: A biomedical platform co-constructed from magnetics and acoustics. Chin. Phys. B 2013, 22, 104301– 104312.

151

Hałupka-Bryl, M. Synthesis and evaluation of superparamagnetic iron oxide nanoparticles containing doxorubicin as a potential targeted drug delivery system. Ph. D. Dissertation, Adam Mickiewicz University, Poznań, Poland, 2013.

152

Ramírez, L. Magnetite (Fe3O4) nanoparticles: Are they really safe? La Granja 2015, 21, 77–83.

153

Paci, A.; Veal, G.; Bardin, C.; Levêque, D.; Widmer, N.; Beijnen, J.; Astier, A.; Chatelut, E. Review of therapeutic drug monitoring of anticancer drugs part 1—Cytotoxics. Eur. J. Cancer 2014, 50, 2010–2019.

154

Kandasamy, G.; Maity, D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 2015, 496, 191–218.

155

Hayek, S.; Chen, C. -J.; Haik, Y.; Mohite, V. Application of nanomagnetic particles in hyperthermia cancer treatment. Nanotech 2006, 2, 67–70.

156

Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.

157

Ma, Z. Y.; Liu, H. Z. Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine. China Particuol. 2007, 5, 1–10.

158

Zeisberger, M.; Dutz, S.; Müller, R.; Hergt, R.; Matoussevitch, N.; Bönnemann, H. Metallic cobalt nanoparticles for heating applications. J. Magn. Magn. Mater. 2007, 311, 224–227.

159

Li, B.; Du, Y.; Yang, H. F.; Huang, Y. Y.; Meng, J.; Xiao, D. M. Magnetic resonance imaging for prostate cancer clinical application. Chin. J. Cancer Res. 2013, 25, 240–249.

160

Stephen, Z. R.; Kievit, F. M.; Zhang, M. Q. Magnetite nanoparticles for medical MR imaging. Mater. Today 2011, 14, 330–338.

161

Shokrollahi, H. Contrast agents for MRI. Mater. Sci. Eng. C 2013, 33, 4485–4497.

162

Szpak, A.; Kania, G.; Skórka, T.; Tokarz, W.; Zapotoczny, S.; Nowakowska, M. Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives. J. Nanopart. Res. 2013, 15, 1372.

163

Tang, M. F.; Lei, L.; Guo, S. R.; Huang, W. L. Recent progress in nanotechnology for cancer therapy. Chin. J. Cancer 2010, 29, 775–780.

164

Yuan, A. H.; Wu, J. H.; Tang, X. L.; Zhao, L. L.; Xu, F.; Hu, Y. Q. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J. Pharm. Sci. 2013, 102, 6–28.

165

Shibu, E. S.; Hamada, M.; Murase, N.; Biju, V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J. Photochem. Photobiol. C: Photochem. Rev. 2013, 15, 53–72.

166

Huang, X. H.; El-Sayed, M. A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28.

167

Song, J.; Qu, J. L.; Swihart, M. T.; Prasad, P. N. Near-IR responsive nanostructures for nanobiophotonics: Emerging impacts on nanomedicine. Nanomed. Nanotech. Biol. Med. 2016, 12, 771–788.

168

Bayazitoglu, Y.; Kheradmand, S.; Tullius, T. K. An overview of nanoparticle assisted laser therapy. Int. J. Heat Mass Tran. 2013, 67, 469–486.

169

Timothy, A. L.; James, B.; Jesse, A.; Konstantin, S. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 2007, 18, 325101.

170

Melancon, M. P.; Elliott, A.; Ji, X. J.; Shetty, A.; Yang, Z.; Tian, M.; Taylor, B.; Stafford, R. J.; Li, C. Theranostics with multifunctional magnetic gold nanoshells: Photothermal therapy and t2* magnetic resonance imaging. Invest. Radiol. 2011, 46, 132–140.

171

Paur, H. -R.; Cassee, F. R.; Teeguarden, J.; Fissan, H.; Diabate, S.; Aufderheide, M.; Kreyling, W. G.; Hänninen, O.; Kasper, G.; Riediker, M. et al. In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. J. Aerosol Sci. 2011, 42, 668–692.

172

Szalay, B. Iron oxide nanoparticles and their toxicological effects in vivo and in vitro studies. Ph. D. Dissertation, University of Szeged, Szeged, Hungary, 2012.

173

Mahmoudi, M.; Hofmann, H.; Rothen-Rutishauser, B.; Petri-Fink, A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem. Rev. 2012, 112, 2323–2338.

174

Malvindi, M. A.; de Matteis, V.; Galeone, A.; Brunetti, V.; Anyfantis, G. C.; Athanassiou, A.; Cingolani, R.; Pompa, P. P. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS ONE 2014, 9, e85835.

175

Buyukhatipoglu, K.; Clyne, A. M. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J. Biomed. Mater. Res. A 2011, 96A, 186–195.

176

Corwin, M. T.; Fananapazir, G.; Chaudhari, A. J. MR angiography of renal transplant vasculature with ferumoxytol: Comparison of high-resolution steady-state and first-pass acquisitions. Acad. Radiol. 2016, 23, 368–373.

177

Chen, X.; Ramström, O.; Yan, M. D. Glyconanomaterials: Emerging applications in biomedical research. Nano Res. 2014, 7, 1381–1403.

178

Chudasama, B.; Vala, A. K.; Andhariya, N.; Upadhyay, R. V.; Mehta, R. V. Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res. 2009, 2, 955–965.

179

Kadota, S. -I.; Kanayama, T.; Miyajima, N.; Takeuchi, K.; Nagata, K. Enhancing of measles virus infection by magnetofection. J. Virol. Methods 2005, 128, 61–66.

180

Vaghari, H.; Jafarizadeh-Malmiri, H.; Berenjian, A.; Anarjan, N. Recent advances in application of chitosan in fuel cells. Sustain. Chem. Process. 2013, 1, 16.

Publication history
Copyright

Publication history

Received: 16 February 2016
Revised: 11 April 2016
Accepted: 04 May 2016
Published: 29 June 2016
Issue date: August 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return