Journal Home > Volume 9 , Issue 8

Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis, chemical sensing, drug delivery, and energy storage. However, the controlled synthesis of multilevel nanotubes remains a great challenge. Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment. This versatile strategy can be effectively applied to fabricate wire-in-tube and tube-in-tube nanotubes of various metal oxides. These multilevel nanotubes possess a large specific surface area, fast mass transport, good strain accommodation, and high packing density, which are advantageous for lithium-ion batteries (LIBs) and the oxygen reduction reaction (ORR). Specifically, shrinkable CoMn2O4 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of ~565 mAh·g-1 at a high rate of 2 A·g-1, maintaining 89% of the latter after 500 cycles. Further, as an oxygen reduction reaction catalyst, these nanotubes also exhibit excellent stability with about 92% current retention after 30, 000 s, which is higher than that of commercial Pt/C (81%). Therefore, this feasible method may push the rapid development of one-dimensional (1D) nanomaterials. These multifunctional nanotubes have great potential in many frontier fields.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction

Show Author's information Jiashen Meng1,§Chaojiang Niu1,§Xiong Liu1Ziang Liu1Hongliang Chen2Xuanpeng Wang1Jiantao Li1Wei Chen1Xuefeng Guo2( )Liqiang Mai1( )
State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
Center for NanochemistryBeijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China

§ These authors contributed equally to this work.

Abstract

Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis, chemical sensing, drug delivery, and energy storage. However, the controlled synthesis of multilevel nanotubes remains a great challenge. Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment. This versatile strategy can be effectively applied to fabricate wire-in-tube and tube-in-tube nanotubes of various metal oxides. These multilevel nanotubes possess a large specific surface area, fast mass transport, good strain accommodation, and high packing density, which are advantageous for lithium-ion batteries (LIBs) and the oxygen reduction reaction (ORR). Specifically, shrinkable CoMn2O4 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of ~565 mAh·g-1 at a high rate of 2 A·g-1, maintaining 89% of the latter after 500 cycles. Further, as an oxygen reduction reaction catalyst, these nanotubes also exhibit excellent stability with about 92% current retention after 30, 000 s, which is higher than that of commercial Pt/C (81%). Therefore, this feasible method may push the rapid development of one-dimensional (1D) nanomaterials. These multifunctional nanotubes have great potential in many frontier fields.

Keywords: lithium-ion battery (LIB), oxygen reduction reaction (ORR), interface-modulated approach, multilevel nanotubes, metal oxide

References(55)

1

Jiang H., Hu Y. J., Guo S. J., Yan C. Y., Lee P. S., Li C. Z. . Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano, 2014, 8: 6038-6046.

2

Li J., Tang S. B., Lu L., Zeng H. C. . Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. , 2007, 129: 9401-9409.

3

Wang J., Zhong H. X., Wang Z. L., Meng F. L., Zhang X. B. . Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2016, 10: 2342-2348.

4

Wang J., Li K., Zhong H. X., Xu D., Wang Z. L., Jiang Z., Wu Z. J., Zhang X. B. . Synergistic effect between metal - nitrogen - carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance. Angew. Chem., Int. Ed. , 2015, 54, 10530-10534.

5

Hu L. B., Chen W., Xie X., Liu N., Yang Y., Wu H., Yao Y., Pasta M., Alshareef H. N., Cui Y. . Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano, 2011, 5: 8904-8913.

6

Mou F. Z., Guan J. G., Shi W. D., Sun Z. G., Wang S. H. . Oriented contraction: A facile nonequilibrium heat-treatment approach for fabrication of maghemite fiber-in-tube and tube- in-tube nanostructures. Langmuir, 2010, 26: 15580-15585.

7

Yu W. J., Liu C., Hou P. X., Zhang L. L., Shan X. Y., Li F., Cheng H. M. . Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano, 2015, 9: 5063-5071.

8

Yuan C. Z., Wu H. B., Xie Y., Lou X. W. . Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. , 2014, 53: 1488-1504.

9

Wang Y. X., Yang J. P., Chou S. L., Liu H. K., Zhang W. X., Zhao D. Y., Dou S. X. . Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. , 2015, 6: 8689.

10

Wang Z. L., Xu D., Xu J. J., Zhang X. B. . Oxygen electro catalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. , 2014, 43, 7746-7786.

11

Gao Z., Song N. N., Zhang Y. Y., Li X. D. . Cotton-textile- enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan. Nano Lett. , 2015, 15: 8194-8203.

12

Niu C. J., Meng J. S., Han C. H., Zhao K. N., Yan M. Y., Mai L. Q. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. , 2014, 14: 2873-2878.

13

Zhao Y., Jiang L. . Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. , 2009, 21: 3621- 3638.

14

Fang Y., Zheng G. F., Yang J. P., Tang H. S., Zhang Y. F., Kong B., Lv Y. Y., Xu C. J., Asiri A. M., Zi J., et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery. Angew. Chem., Int. Ed. , 2014, 53: 5366-5370.

15

Lai X. Y., Li J., Korgel B. A., Dong Z. H., Li Z. M., Su F. B., Du J., Wang D. . General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem., Int. Ed. , 2011, 50: 2738-2741.

16

Shao M. F., Ning F. Y., Zhao Y. F., Zhao J. W., Wei M., Evans D. G., Duan X. . Core-shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chem. Mater. , 2012, 24: 1192-1197.

17

Wu J., Wang N., Zhao Y., Jiang L. . Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A, 2013, 1: 7290-7305.

18

Zhang G. Q., Lou X. W. . General synthesis of multi- shelled mixed metal oxide hollow spheres with superior lithium storage properties. Angew. Chem., Int. Ed. , 2014, 53: 9041-9044.

19

Zhu Y. F., Shi J. L., Shen W. H., Dong X. P., Feng J. W., Ruan M. L., Li Y. S. . Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew. Chem., Int. Ed. , 2005, 44: 5083-5087.

20

Lou X. W., Li C. M., Archer L. A. . Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. , 2009, 21: 2536-2539.

21

Lou X. W., Yuan C., Archer L. A. . Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv. Mater. , 2007, 19: 3328-3332.

22

Dong Z. H., Lai X. Y., Halpert J. E., Yang N. L., Yi L. X., Zhai J., Wang D., Tang Z. Y., Jiang L. . Accurate control of multishelled ZnO hollow microspheres for dye- sensitized solar cells with high efficiency. Adv. Mater. , 2012, 24: 1046-1049.

23

Zhou L., Zhao D. Y., Lou X. W. . Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. , 2012, 24: 745-748.

24

Aravindan V., Sundaramurthy J., Kumar P. S., Lee Y. S., Ramakrishna S., Madhavi S. . Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries. Chem. Commun. , 2015, 51: 2225-2234.

25

Sun Y. G., Mayers B., Xia Y. N. . Metal nanostructures with hollow interiors. Adv. Mater. , 2003, 15: 641-646.

26

Wang H. G., Yuan S., Ma D. L., Zhang X. B., Yan J. M. . Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance. Energy Environ. Sci. , 2015, 8: 1660-1681.

27

Xia Y. N., Yang P. D., Sun Y. G., Wu Y. Y., Mayers B., Gates B., Yin Y. D., Kim F., Yan H. Q. . One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. , 2003, 15: 353-389.

28

Yu Y., Gu L., Wang C. L., Dhanabalan A., Van Aken P. A., Maier J. encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew. Chem., Int. Ed. , 2009, 48: 6485-6489.

29

Luo W., Lorger S., Wang B., Bommier C., Ji X. L. . Facile synthesis of one-dimensional peapod-like Sb@C submicron- structures. Chem. Commun. , 2014, 50: 5435-5437.

30

Peng S. J., Li L. L., Hu Y. X., Srinivasan M., Cheng F. Y., Chen J., Ramakrishna S. . Fabrication of spinel one- dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano, 2015, 9: 1945- 1954.

31

Xu J. J., Xu D., Wang Z. L., Wang H. G., Zhang L. L., Zhang X. B. . Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem., Int. Ed. , 2013, 52: 3887-3890.

32

Zhang G. Q., Xia B. Y., Xiao C., Yu L., Wang X., Xie Y., Lou X. W. . General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew. Chem., Int. Ed. , 2013, 52: 8643-8647.

33

Cai Z. Y., Xu L., Yan M. Y., Han C. H., He L., Hercule K. M., Niu C. J., Yuan Z. F., Xu W. W., Qu L. B., et al. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett. , 2015, 15: 738-744.

34

Zhang Z. T., Guo K. P., Li Y. M., Li X. Y., Guan G. Z., Li H. P., Luo Y. F., Zhao F. Y., Zhang Q., Wei B., et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photonics, 2015, 9: 233-238.

35

Meng J. S., Liu Z. A., Niu C. J., Xu X. M., Liu X., Zhang G. B., Wang X. P., Huang M., Yu Y., Mai L. Q. A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. J. . Mater. Chem. A, 2016, 4: 4893-4899.

36

Hu Y. X., Zhang T. R., Cheng F. Y., Zhao Q., Han X. P., Chen J. . Recycling application of Li-MnO2 batteries as rechargeable lithium-air batteries. Angew. Chem., Int. Ed. , 2015, 54: 4338-4343.

37

Lang X. Y., Hirata A., Fujita T., Chen M. W. . Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. , 2011, 6: 232-236.

38

Huang X. L., Wang R. Z., Xu D., Wang Z. L., Wang H. G., Xu J. J., Wu Z., Liu Q. C., Zhang Y., Zhang X. B. . Homogeneous CoO on graphene for binder-free and ultralong- life lithium ion batteries. Adv. Funct. Mater. , 2013, 23, 4345-4353.

39

Mai L. Q., Tian X. C., Xu X., Chang L., Xu L. . Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. , 2014, 114: 11828-11862.

40

Ren Y., Ma Z., Bruce P. G. . Ordered mesoporous metal oxides: Synthesis and applications. Chem. Soc. Rev. , 2012, 41: 4909-4927.

41

Huang X. L., Xu D., Yuan S., Ma D. L., Wang S., Zheng H. Y., Zhang X. B. . Dendritic Ni-P-coated melamine foam for a lightweight, low-cost, and amphipathic three-dimensional current collector for binder-free electrodes. Adv. Mater. , 2014, 26, 7264-7270.

42

Zhao K. N., Liu F. N., Niu C. J., Xu W. W., Dong Y. F., Zhang L., Xie S. M., Yan M. Y., Wei Q. L., Zhao D. Y., et al. Graphene oxide wrapped amorphous copper vanadium oxide with enhanced capacitive behavior for high-rate and long-life lithium-ion battery anodes. Adv. Sci. , 2015, 2: 1500154.

43

Palacin M. R. . Recent advances in rechargeable battery materials: A chemist's perspective. Chem. Soc. Rev. , 2009, 38: 2565-2575.

44

Yu D. S., Goh K., Wang H., Wei L., Jiang W. C., Zhang Q., Dai L. M., Chen Y. . Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. , 2014, 9: 555-562.

45

Yang X. W., Cheng C., Wang Y. F., Qiu L., Li D. . Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science, 2013, 341: 534-537.

46

Li C., Han X. P., Cheng F. Y., Hu Y. X., Chen C. C., Chen J. . Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. , 2015, 6: 7345.

47

Liang Y. Y., Wang H. L., Zhou J. G., Li Y. G., Wang J., Regier T., Dai H. J. . Covalent hybrid of spinel manganese- cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. , 2012, 134: 3517-3523.

48

Menezes P. W., Indra A., Sahraie N. R., Bergmann A., Strasser P., Driess M. . Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions. ChemSusChem, 2015, 8: 164-171.

49

Zhang T. R., Cheng F. Y., Du J., Hu Y. X., Chen J. . Efficiently enhancing oxygen reduction electrocatalytic activity of MnO2 using facile hydrogenation. Adv. Energy Mater. , 2015, 5: 1400654.

50

Niu C. J., Meng J. S., Wang X. P., Han C. H., Yan M. Y., Zhao K. N., Xu X. M., Ren W. H., Zhao Y. L., Xu L., et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. , 2015, 6: 7402.

51

Liang J., Yu X. Y., Zhou H., Wu H. B., Ding S. J., Lou X. W. . Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem., Int. Ed. , 2014, 53: 12803-12807.

52

Sciacca B., Yalcin A. O., Garnett E. C. . Transformation of Ag nanowires into semiconducting AgFeS2 nanowires. J. Am. Chem. Soc. , 2015, 137: 4340-4343.

53

Zhang H. X., Wang J., Zhang Y. W., Xu W. L., Xing W., Xu D., Zhang Y. F., Zhang X. B. ZIF-8 derived graphene- based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. , 2014, 53: 14235-14239.

54

Wang Z. L., Xu D., Wang H. G., Wu Z., Zhang X. B. . In situ fabrication of porous graphene electrodes for high- performance energy storage. ACS Nano 2013, 7: 2422-2430.

55

Xia B. Y., Yan Y., Li N., Wu H. B., Lou X. W., Wang X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy, 2016, 1: 15006.

File
nr-9-8-2445_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 March 2016
Revised: 28 April 2016
Accepted: 03 May 2016
Published: 29 June 2016
Issue date: August 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2013CB934103 and 2012CB933003), the National Natural Science Foundation of China (Nos. 51521001 and 51272197), the National Science Fund for Distinguished Young Scholars (No. 51425204), the Hubei Province Natural Science Fund for Distinguished Young Scholars (No. 2014CFA035), and the Fundamental Research Funds for the Central Universities (Nos. 2015-Ⅲ-032, 2016-YB-004, and 2015-KF-3). We thank Prof. D. Y. Zhao of Fudan University and Prof. J. Liu of Pacific Northwest National Laboratory for useful discussions and assistance with the manuscript.

Return