Journal Home > Volume 9 , Issue 8

Ultrathin planar absorbers hold promise in solar energy systems because they can reduce the material, fabrication, and system cost. Here, we present a general strategy of effective medium design to realize ultrathin planar broadband absorbers. The absorber consists of two ultrathin absorbing dielectrics to design an effective absorbing medium, a transparent layer, and metallic substrate. Compared with previous studies, this strategy provides another dimension of freedom to enhance optical absorption; therefore, destructive interference can be realized over a broad spectrum. To demonstrate the power and simplicity of this strategy, we both experimentally and theoretically characterized an absorber with 5-nm-thick Ge, 10-nm-thick Ti, and 50-nm-thick SiO2 films coated on an Ag substrate fabricated using simple deposition methods. Absorptivity higher than 80% was achieved in 15-nm-thick (1/50 of the center wavelength) Ge and Ti films from 400 nm to near 1 μm. As an application example, we experimentally demonstrated that the absorber exhibited a normal solar absorptivity of 0.8 with a normal emittance of 0.1 at 500 ℃, thus demonstrating its potential in solar thermal systems. The effective medium design strategy is general and allows material versatility, suggesting possible applications in real-time optical manipulation using dynamic materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrathin planar broadband absorber through effective medium design

Show Author's information Dong Liu1,2Haitong Yu2Zhen Yang2Yuanyuan Duan2( )
School of Energy and Power EngineeringNanjing University of Science & TechnologyNanjing210094China
Key Laboratory of Thermal Science and Power Engineering of Ministry of EducationKey Laboratory for CO2 Utilization and Reduction TechnologyTsinghua UniversityBeijing100084China

Abstract

Ultrathin planar absorbers hold promise in solar energy systems because they can reduce the material, fabrication, and system cost. Here, we present a general strategy of effective medium design to realize ultrathin planar broadband absorbers. The absorber consists of two ultrathin absorbing dielectrics to design an effective absorbing medium, a transparent layer, and metallic substrate. Compared with previous studies, this strategy provides another dimension of freedom to enhance optical absorption; therefore, destructive interference can be realized over a broad spectrum. To demonstrate the power and simplicity of this strategy, we both experimentally and theoretically characterized an absorber with 5-nm-thick Ge, 10-nm-thick Ti, and 50-nm-thick SiO2 films coated on an Ag substrate fabricated using simple deposition methods. Absorptivity higher than 80% was achieved in 15-nm-thick (1/50 of the center wavelength) Ge and Ti films from 400 nm to near 1 μm. As an application example, we experimentally demonstrated that the absorber exhibited a normal solar absorptivity of 0.8 with a normal emittance of 0.1 at 500 ℃, thus demonstrating its potential in solar thermal systems. The effective medium design strategy is general and allows material versatility, suggesting possible applications in real-time optical manipulation using dynamic materials.

Keywords: solar energy, ultrathin planar film, broadband absorber, effective medium design

References(24)

1

Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K. A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature 2014, 511, 334-337.

2

Dotan, H.; Kfir, O.; Sharlin, E.; Blank, O.; Gross, M.; Dumchin, I.; Ankonina, G.; Rothschild, A. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 2013, 12, 158-164.

3

Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

4

Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N. J. Solar vapor generation enabled by nanoparticles. ACS Nano 2013, 7, 42-49.

5

Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20-24.

6

Khodasevych, I. E.; Wang, L. P.; Mitchell, A.; Rosengarten, G. Micro- and nanostructured surfaces for selective solar absorption. Adv. Opt. Mater. 2015, 3, 852-881.

7

Park, J.; Kang, J. H.; Vasudev, A. P.; Schoen, D. T.; Kim, H.; Hasman, E.; Brongersma, M. L. Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate. ACS Photonics 2014, 1, 812-821.

8

Park, J.; Kim, S. J.; Brongersma, M. L. Condition for unity absorption in an ultrathin and highly lossy film in a Gires-Tournois interferometer configuration. Opt. Lett. 2015, 40, 1960-1963.

9

Song, H. M.; Guo, L. Q.; Liu, Z. J.; Liu, K.; Zeng, X.; Ji, D. X.; Zhang, N.; Hu, H. F.; Jiang, S. H.; Gan, Q. Q. Nanocavity enhancement for ultra-thin film optical absorber. Adv. Mater. 2014, 26, 2737-2743.

10

Kats, M. A.; Byrnes, S. J.; Blanchard, R.; Kolle, M.; Genevet, P.; Aizenberg, J.; Capasso, F. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings. Appl. Phys. Lett. 2013, 103, 101104.

11

Lee, K. T.; Lee, J. Y.; Seo, S.; Guo, L. J. Colored ultrathin hybrid photovoltaics with high quantum efficiency. Light Sci. Appl. 2014, 3, e215.

12

Lee, J. Y.; Lee, K. T.; Seo, S.; Guo, L. J. Decorative power generating panels creating angle insensitive transmissive colors. Sci. Rep. 2014, 4, 4192.

13

Han, Q.; Fu, Y. Q.; Jin, L.; Zhao, J. J.; Xu, Z. W.; Fang, F. Z.; Gao, J. S.; Yu, W. X. Germanium nanopyramid arrays showing near-100% absorption in the visible regime. Nano Res. 2015, 8, 2216-2222.

14

Li, W.; Guler, U.; Kinsey, N.; Naik, G. V.; Boltasseva, A.; Guan, J. G.; Shalaev, V. M.; Kildishev, A. V. Refractory plasmonics with titanium nitride: Broadband metamaterial absorber. Adv. Mater. 2014, 26, 7959-7965.

15

Chou, J. B.; Yeng, Y. X.; Lee, Y. E.; Lenert, A.; Rinnerbauer, V.; Celanovic, I.; Soljačić, M.; Fang, N. X.; Wang, E. N.; Kim, S. G. Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. Adv. Mater. 2014, 26, 8041-8045.

16

Li, P. F.; Liu, B. A.; Ni, Y. Z.; Liew, K. K.; Sze, J.; Chen, S.; Shen, S. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Adv. Mater. 2015, 27, 4585-4591.

17

Liu, D.; Bierman, D. M.; Lenert, A.; Yu, H. T.; Yang, Z.; Wang, E. N.; Duan, Y. Y. Ultrathin planar hematite film for solar photoelectrochemical water splitting. Opt. Express 2015, 23, A1491-A1498.

18

Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999.

19

Giovampaola, C. D.; Engheta, N. Digital metamaterials. Nat. Mater. 2014, 13, 1115-1121.

20
RREDC. Reference Solar Spectral Irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/ (accessed Oct, 2015).
21

Yang, C. Y.; Ji, C. G.; Shen, W. D.; Lee, K. T.; Zhang, Y. G.; Liu, X.; Guo, L. J. Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption. ACS Photonics 2016, 3, 590-596.

22

Yao, Y.; Kats, M. A.; Shankar, R.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. Wide wavelength tuning of optical antennas on graphene with nanosecond response time. Nano Lett. 2014, 14, 214-219.

23

Zhu, Y. Y.; Antao, D. S.; Xiao, R.; Wang, E. N. Real-time manipulation with magnetically tunable structures. Adv. Mater. 2014, 26, 6442-6446.

24

Manjavacas, A.; de Abajo, F. J. G. Tunable plasmons in atomically thin gold nanodisks. Nat. Commun. 2014, 5, 3548.

File
nr-9-8-2354_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 December 2015
Revised: 23 April 2016
Accepted: 25 April 2016
Published: 04 June 2016
Issue date: August 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51236004 and 51321002).

Return