Journal Home > Volume 9 , Issue 8

Top-down lithography techniques allow the fabrication of nanostructured elements with novel spin configurations, which provide a new route to engineer and manipulate the magnetic response of sensors and electronic devices and understand the role of fundamental interactions in materials science. In this study, shallow nanostructure-patterned thin films were designed to present inverse magnetization curves, i.e., an anomalous magnetic mechanism characterized by a negative coercivity and negative remanence. This procedure involved a method for manipulating the spin configuration that yielded a negative coercivity after the patterning of a single material layer. Patterned NiFe thin films with trench depths between 15%–25% of the total film thickness exhibited inverse hysteresis loops for a wide angular range of the applied field and the trench axis. A model based on two exchange-coupled subsystems accounts for the experimental results and thus predicts the conditions for the appearance of this magnetic behavior. The findings of the study not only advance our understanding of patterning effects and confined magnetic systems but also enable the local design and control of the magnetic response of thin materials with potential use in sensor engineering.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering magnetic nanostructures with inverse hysteresis loops

Show Author's information Beatriz Mora1Nastassia Soriano1Carolina Redondo1Alberto Arteche1David Navas2Rafael Morales3,4( )
Dpto. de Química-FísicaUniversidad del País Vasco UPV/EHU48940Leioa, Spain
IFIMUP-IN and Dept. Fisica e AstronomiaUniversidade do Porto4169007Porto, Portugal
Dpto. de Química-Física & BCMaterialsUniversidad del País Vasco UPV/EHU48940Leioa, Spain
IKERBASQUEBasque Foundation for Science48011Bilbao, Spain

Abstract

Top-down lithography techniques allow the fabrication of nanostructured elements with novel spin configurations, which provide a new route to engineer and manipulate the magnetic response of sensors and electronic devices and understand the role of fundamental interactions in materials science. In this study, shallow nanostructure-patterned thin films were designed to present inverse magnetization curves, i.e., an anomalous magnetic mechanism characterized by a negative coercivity and negative remanence. This procedure involved a method for manipulating the spin configuration that yielded a negative coercivity after the patterning of a single material layer. Patterned NiFe thin films with trench depths between 15%–25% of the total film thickness exhibited inverse hysteresis loops for a wide angular range of the applied field and the trench axis. A model based on two exchange-coupled subsystems accounts for the experimental results and thus predicts the conditions for the appearance of this magnetic behavior. The findings of the study not only advance our understanding of patterning effects and confined magnetic systems but also enable the local design and control of the magnetic response of thin materials with potential use in sensor engineering.

Keywords: magnetic nanostructures, magnetic patterning effects, inverted loops, negative coercivity, negative remanence

References(26)

1

Hu, Y.; Zhang, Z. J.; Zhou, Q.; Liu, W.; Li, Z. C.; Meng, D. Q. Realignment of slanted Fe nanorods on silicon substrates by a strong magnetic field. Nano Res. 2010, 3, 438-443.

2

Lavrijsen, R.; Lee, J. -H.; Fernández-Pacheco, A.; Petit, D. C. M. C.; Mansell, R.; Cowburn, R. P. Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 2013, 493, 647-650.

3

Qiu, H. -J.; Liu, L.; Mu, Y. -P.; Zhang, H. -J.; Wang, Y. Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Res. 2015, 8, 321-339.

4

Li, W. M.; Wong, S. K.; Herng, T. S.; Yap, L. K.; Sim, C. H.; Yang, Z. C.; Chen, Y. J.; Shi, J. Z.; Han, G. C.; Xue, J. M. et al. Perpendicular magnetic clusters with configurable domain structures via dipole-dipole interactions. Nano Res. 2015, 8, 3639-3650.

5

Zhang, M. L.; Earhart, C. M.; Ooi, C.; Wilson, R. J.; Tang, M.; Wang, S. X. Functionalization of high-moment magnetic nanodisks for cell manipulation and separation. Nano Res. 2013, 6, 745-751.

6

Emori, S.; Bauer, U.; Ahn, S. -M.; Martinez, E.; Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 2013, 12, 611-616.

7

Morales, R.; Kovylina, M.; Schuller, I. K.; Labarta, A.; Batlle, X. Antiferromagnetic/ferromagnetic nanostructures for multidigit storage units. Appl. Phys. Lett. 2014, 104, 032401.

8

Guite, C.; Kerk, I. S.; Sekhar, M. C.; Ramu, M.; Goolaup, S.; Lew, W. S. All-electrical deterministic single domain wall generation for on-chip applications. Sci. Rep. 2014, 4, 7459.

9

Yang, S. -H.; Ryu, K. -S.; Parkin, S. Domain-wall velocities of up to 750 m·s-1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 2015, 10, 221-226.

10

Chang, C. -A. Magnetization of (100) Cu-Ni, (100) Cu-Co, and (100) Ni-Co superlattices deposited on silicon using a Cu seed layer. Appl. Phys. Lett. 1990, 57, 297-299.

11

Beaujour, J. -M. L.; Gordeev, S. N.; Bowden, G. J.; de Groot, P. A. J.; Rainford, B. D.; Ward, R. C. C.; Wells, M. R. Negative coercivity in epitaxially grown (110) DyFe2/YFe2 superlattices. Appl. Phys. Lett. 2001, 78, 964-966.

12

Ziese, M.; Vrejoiu, I.; Pippel, E.; Nikulina, E.; Hesse, D. Magnetic properties of Pr0.7Ca0.3MnO3/SrRuO3 superlattices. Appl. Phys. Lett. 2011, 98, 132504.

13

Kim, D.; Kim, C.; Kim, C. -O.; Yoon, S. S.; Naka, M.; Tsunoda, M.; Takahashi, M. Negative coercivity characteristics in antiferromagnetic coupled hard/soft multilayers. J. Magn. Magn. Mater. 2006, 304, e356-e358.

14

Martin, K. N.; Wang, K.; Bowden, G. J.; Zhukov, A. A.; de Groot, P. A. J.; Zimmermann, J. P.; Fangohr, H.; Ward, R. C. C. Exchange spring driven spin flop transition in ErFe2/YFe2 multilayers. Appl. Phys. Lett. 2006, 89, 132511.

15

Takanashi, K.; Kurokawa, H.; Fujimori, H. A novel hysteresis loop and indirect exchange coupling in Co/Pt/Gd/Pt multilayer films. Appl. Phys. Lett. 1993, 63, 1585-1587.

16

Wu, Y. Z.; Dong, G. S.; Jin, X. F. Negative magnetic remanence in Co/Mn/Co grown on GaAs(001). Phys. Rev. B 2001, 64, 214406.

17

Barth, A.; Treubel, F.; Marszałek, M.; Evenson, W.; Hellwig, O.; Borschel, C.; Albrecht, M.; Schatz, G. Magnetic coupling in Gd/Ni bilayers. J. Phys. Condens. Matter 2008, 20, 395232.

18

Demirtas, S.; Hossu, M. R.; Arikan, M.; Koymen, A. R.; Salamon, M. B. Tunable negative and positive coercivity for Sm Co/(Co/Gd) exchange springs investigated with SQUID magnetometry. Phys. Rev. B 2007, 76, 214430.

19

Valvidares, S. M.; Álvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M. Inverted hysteresis loops in magnetically coupled bilayers with uniaxial competing anisotropies: Theory and experiments. Phys. Rev. B 2001, 64, 134423.

20

Álvarez-Prado, L. M.; Alameda, J. M. Magnetic characterization of exchange-coupled thin films having competing anisotropies. J. Magn. Magn. Mater. 2007, 316, e872-e875.

21

Zheng, R. K.; Liu, H.; Wang, Y.; Zhang, X. X. Inverted hysteresis in exchange biased Cr2O3 coated CrO2 particles. J. Appl. Phys. 2004, 96, 5370-5372.

22

Yang, J.; Kim, J.; Lee, J.; Woo, S.; Kwak, J.; Hong, J.; Jung, M. Inverted hysteresis loops observed in a randomly distributed cobalt nanoparticle system. Phys. Rev. B 2008, 78, 094415.

23

Haycock, P. W.; Chioncel, M. F.; Shah, J. Remanence studies of cobalt thin films exhibiting inverse hysteresis. J. Magn. Magn. Mater. 2002, 242-245, 1057-1060.

24

van Tho, L.; Kim, C. G.; Kim, C. O. Investigation of negative coercivity in one layer formation of soft and hard magnetic materials. J. Appl. Phys. 2008, 103, 07B906.

25

Chun, B. S.; Kim, S. D.; Kim, Y. S.; Hwang, J. Y.; Kim, S. S.; Rhee, J. R.; Kim, T. W.; Hong, J. P.; Jung, M. H.; Kim, Y. K. Effects of Co addition on microstructure and magnetic properties of ferromagnetic CoFeSiB alloy films. Acta Mater. 2010, 58, 2836-2846.

26

Cowburn, R. P. Property variation with shape in magnetic nanoelements. J. Phys. D-Appl. Phys. 2000, 33, R1.

File
nr-9-8-2347_ESM.pdf (1,022.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 November 2015
Revised: 05 April 2016
Accepted: 25 April 2016
Published: 30 May 2016
Issue date: August 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by Basque Country Government grant Nanoiker11, Spanish MINECO FIS2013-45469 and European grant FP7-MCA-IRSES-318901. Technical and human support provided by SGIker Laser and X-ray Facilities (UPV/EHU, MICINN, GV/EJ, ESF) is gratefully acknowledged.

Return