Journal Home > Volume 9 , Issue 8

Controlling the size of SBA-15 can be beneficial for exploiting CMK-3, which has excellent structural parameters, for better performance in adsorption and/or catalytic processes. In this study, the width of freestanding SBA-15 rods was readily and successfully regulated by simply altering the stirring power during the synthesis. A higher stirring rate produced SBA-15 rods with larger width. Then, the size of the CMK-3 rods was adjusted by duplication of the different-sized SBA-15. The results show that the larger sized CMK-3 has higher specific surface area and pore volume, which led to a higher adsorption capacity and a faster adsorption rate. It is believed that the synthetic method reported here is powerful for developing better mesoporous carbon for application in water purification and catalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Size control of SBA-15 by tuning the stirring speed for the formation of CMK-3 with distinct adsorption performance

Show Author's information Qi WangZhencai WangTianhao ZhengXiongping ZhouWei Chen( )Dekun MaYun YangShaoming Huang( )
Key Laboratory of Carbon Materials of Zhejiang ProvinceCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325027China

Abstract

Controlling the size of SBA-15 can be beneficial for exploiting CMK-3, which has excellent structural parameters, for better performance in adsorption and/or catalytic processes. In this study, the width of freestanding SBA-15 rods was readily and successfully regulated by simply altering the stirring power during the synthesis. A higher stirring rate produced SBA-15 rods with larger width. Then, the size of the CMK-3 rods was adjusted by duplication of the different-sized SBA-15. The results show that the larger sized CMK-3 has higher specific surface area and pore volume, which led to a higher adsorption capacity and a faster adsorption rate. It is believed that the synthetic method reported here is powerful for developing better mesoporous carbon for application in water purification and catalysis.

Keywords: adsorption, SBA-15, CMK-3, size control

References(35)

1

Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 2006, 18, 2426–2431.

2

Zhang, Y. X.; Xu, S. C.; Luo, Y. Y.; Pan, S. S.; Ding, H. L.; Li, G. H. Synthesis of mesoporous carbon capsules encapsulated with magnetite nanoparticles and their application in wastewater treatment. J. Mater. Chem. 2011, 21, 3664–3671.

3

Hu, L. X.; Dang, S. T.; Yang, X. P.; Dai, J. S. Synthesis of recyclable catalyst–sorbent Fe/CMK-3 for dry oxidation of phenol. Micropor. Mesopor. Mater. 2012, 147, 188–193.

4

Dong, Y.; Lin, H. M.; Qu, F. Y. Synthesis of ferromagnetic ordered mesoporous carbons for bulky dye molecules adsorption. Chem. Eng. J. 2012, 193-194, 169–177.

5

Wang, T. B.; Liang, L.; Wang, R. W.; Jiang, Y. Q.; Lin, K. F.; Sun, J. M. Magnetic mesoporous carbon for efficient removal of organic pollutants. Adsorption 2012, 18, 439–444.

6

Tian, Y.; Wang, X. F.; Pan, Y. F. Simple synthesis of Ni- containing ordered mesoporous carbons and their adsorption/ desorption of methylene orange. J. Hazard. Mater. 2012, 213214, 361–368.

7

Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246–262.

8

Wang, Z. C.; Chen, W.; Han, Z. L.; Zhu, J.; Lu, N.; Yang, Y.; Ma, D. K.; Chen, Y.; Huang, S. M. Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Res. 2014, 7, 1254–1262.

9

Huang, S. S.; Yang, P. P.; Cheng, Z. Y.; Li, C. X.; Fan, Y.; Kong, D. Y.; Lin, J. Synthesis and characterization of magnetic FexOy@SBA-15 composites with different morphologies for controlled drug release and targeting. J. Phys. Chem. C 2008, 112, 7130–7137.

10

Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879.

11

Luo, G. F.; Chen, W. H.; Jia, H. Z.; Sun, Y. X.; Cheng, H.; Zhuo, R. X.; Zhang, X. Z. An indicator-guided photo- controlled drug delivery system based on mesoporous silica/gold nanocomposites. Nano Res. 2015, 8, 1893–1905.

12

Chen, C.; Nan, C. Y.; Wang, D. S.; Su, Q.; Duan, H. H.; Liu, X. W.; Zhang, L. S.; Chu, D. R.; Song, W. G.; Peng, Q. et al. Mesoporous multicomponent nanocomposite colloidal spheres: Ideal high-temperature stable model catalysts. Angew. Chem., Int. Ed. 2011, 50, 3725–3729.

13

Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Characterization of the porous structure of SBA-15. Chem. Mater. 2000, 12, 1961–1968.

14

Sayari, A.; Hamoudi, S.; Yang, Y. Applications of pore- expanded mesoporous silica. 1. Removal of heavy metal cations and organic pollutants from wastewater. Chem. Mater. 2005, 17, 212–216.

15

Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.

16

Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036.

17

Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.

18

Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712–10713.

19

Wu, Z. X.; Lv, Y. Y.; Xia, Y. Y.; Webley, P. A.; Zhao, D. Y. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. J. Am. Chem. Soc. 2012, 134, 2236–2245.

20

Xia, K. S.; Gao, Q. M.; Wu, C. D.; Song, S. Q.; Ruan, M. L. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon 2007, 45, 1989– 1996.

21

Giasafaki, D.; Charalambopulou, G.; Bourlinos, A.; Stubos, A.; Goumis, D.; Steriotis, T. A hydrogen sorption study on a Pd-doped CMK-3 type ordered mesoporous carbon. Adsorption 2013, 19, 803–811.

22

Wang, H. J.; Jeong, H. Y.; Imura, M.; Wang, L.; Radhakrishnan, L.; Fujita, N.; Castle, T.; Terasaki O.; Yamauchi, Y. Shape- and size-controlled synthesis in hard templates: Sophisticated chemical reduction for mesoporous monocrystalline platinum nanoparticles. J. Am. Chem. Soc. 2011, 133, 14526–14529.

23

Zhao, D. Y.; Sun, J. Y.; Li, Q. Z.; Stucky, G. D. Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 2000, 12, 275–279.

24

Kang, S.; Chae, Y. B.; Yu, J. S. HCl as a key parameter in size-tunable synthesis of SBA-15 silica with rodlike morphology. J. Nanosci. Nanotechnol. 2009, 9, 527–532.

25

Yu, C.; Fan, J.; Tian, B.; Zhao, D. Y.; Stucky, G. D. High- yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv. Mater. 2002, 14, 1742–1745.

DOI
26

Tian, B. Z.; Liu, X. Y.; Tu, B.; Yu, C. Z.; Fan, J.; Wang, L. M.; Xie, S. H.; Stucky G. D.; Zhao, D. Y. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nat. Mater. 2003, 2, 159–163.

27

Yu, C. Z.; Tian, B. Z.; Fan, J.; Stucky, G. D.; Zhao, D. Y. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J. Am. Chem. Soc. 2002, 124, 4556–4557.

28

Zhao, D. Y.; Yang, P. D.; Margolese, D. I.; Stucky, G. D. Synthesis of continuous mesoporous silica thin films with three-dimensional accessible pore structures. Chem. Commun. 1998, 2499–2500.

29

Yu, C. Z.; Tian, B. Z.; Fan, J.; Stucky, G. D.; Zhao, D. Y. Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers. Chem. Commun. 2001, 2726–2727.

30

Chen, L.; Wang, Y. M.; He, M. Y. Morphological control of mesoporous silica SBA-15 synthesized at low temperature without additives. J. Porous Mater. 2011, 18, 211–216.

31

Tian, B. Z.; Liu, X. Y.; Solovyov, L. A.; Liu, Z.; Yang, H. F.; Zhang, Z. D.; Xie, S. H.; Zhang, F. Q.; Tu, B.; Yu, C. Z. et al. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. J. Am. Chem. Soc. 2004, 126, 865–875.

32

Ma, L. Q.; Zhai, S. R.; Liu, N.; Zhai, B.; An, Q. D. Controlled fabrication and application of platelet SBA-15 materials. Prog. Chem. 2012, 24, 471–482.

33

Sayari, A.; Han, B. -H.; Yong, Y. Simple synthesis route to monodispersed SBA-15 silica rods. J. Am. Chem. Soc. 2004, 126, 14348–14349.

34

Kosuge, K.; Sato, T.; Kikukawa, N.; Takemori, M. Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chem. Mater. 2004, 16, 899–905.

35

Chen, C. Y.; Burkett, S. L.; Li, H. X.; Davis, M. E. Studies on mesoporous materials Ⅱ. Synthesis mechanism of MCM-41. Micropor. Mater. 1993, 2, 27–34.

File
nr-9-8-2294_ESM.pdf (443.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 April 2016
Revised: 20 April 2016
Accepted: 21 April 2016
Published: 17 June 2016
Issue date: August 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21541005 and 51420105002), and the Natural Science Foundation of Zhejiang Province (NSFZJ) (No. LY14B010002).

Return