Journal Home > Volume 9 , Issue 8

The design of efficient artificial photosynthetic systems that harvest solar energy to drive the hydrogen evolution reaction via water reduction is of great importance from both the theoretical and practical viewpoints. Integrating appropriate co-catalyst promoters with strong light absorbing materials represents an ideal strategy to enhance the conversion efficiency of solar energy in hydrogen production. Herein, we report, for the first time, the synthesis of a class of unique hybrid structures consisting of ultrathin Co(Ni)-doped MoS2 nanosheets (co-catalyst promoter) intimately grown on semiconductor CdS nanorods (light absorber). The as-synthesized one-dimensional CdS@doped-MoS2 heterostructures exhibited very high photocatalytic activity (with a quantum yield of 17.3%) and stability towards H2 evolution from the photoreduction of water. Theoretical calculations revealed that Ni doping can increase the number of uncoordinated atoms at the edge sites of MoS2 nanosheets to promote electron transfer across the CdS/MoS2 interfaces as well as hydrogen reduction, leading to an efficient H2 evolution reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production

Show Author's information Xiaoyan Ma1Jinquan Li1Changhua An1( )Juan Feng1Yuhua Chi1Junxue Liu1Jun Zhang1( )Yugang Sun2( )
State Key Laboratory of Heavy Oil ProcessingCollege of Chemical Engineeringand College of ScienceChina University of PetroleumQingdao266580China
Department of ChemistryTemple UniversityPhiladelphiaPennsylvania19122USA

Abstract

The design of efficient artificial photosynthetic systems that harvest solar energy to drive the hydrogen evolution reaction via water reduction is of great importance from both the theoretical and practical viewpoints. Integrating appropriate co-catalyst promoters with strong light absorbing materials represents an ideal strategy to enhance the conversion efficiency of solar energy in hydrogen production. Herein, we report, for the first time, the synthesis of a class of unique hybrid structures consisting of ultrathin Co(Ni)-doped MoS2 nanosheets (co-catalyst promoter) intimately grown on semiconductor CdS nanorods (light absorber). The as-synthesized one-dimensional CdS@doped-MoS2 heterostructures exhibited very high photocatalytic activity (with a quantum yield of 17.3%) and stability towards H2 evolution from the photoreduction of water. Theoretical calculations revealed that Ni doping can increase the number of uncoordinated atoms at the edge sites of MoS2 nanosheets to promote electron transfer across the CdS/MoS2 interfaces as well as hydrogen reduction, leading to an efficient H2 evolution reaction.

Keywords: MoS2, photocatalysis, water splitting, two-dimensional material

References(37)

1

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

2

Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

3

Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294–2320.

4

Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527–546.

5

Maeda, K.; Teramura, K.; Saito, N.; Inoue, Y.; Domen, K. Improvement of photocatalytic activity of (Ga1-xZnx)(N1-xOx) solid solution for overall water splitting by co-loading Cr and another transition metal. J. Catal. 2006, 243, 303–308.

6

Teramura, K.; Maeda, K.; Saito, T.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga1-xZnx)(N1-xOx) for photocatalytic overall water splitting. J. Phys. Chem. B 2006, 110, 4500–4501.

7

Kato, H.; Kudo, A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J. Phys. Chem. B 2001, 105, 4285–4292.

8

Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: Ⅲ. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfac. Electrochem. 1972, 39, 163–184.

9

Linsebigler, A. L.; Lu, G. Q.; Yates Jr, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

10

Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.

11

Ishikawa, A.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 2002, 124, 13547–13553.

12

Kato, H.; Asakura, K.; Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089.

13

Ikarashi, K.; Sato, J.; Kobayashi, H.; Saito, N.; Nishiyama, H.; Inoue, Y. Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d10 configuration. J. Phys. Chem. B 2002, 106, 9048–9053.

14

Kitano, M.; Takeuchi, M.; Matsuoka, M.; Thomas, J. M.; Anpo, M. Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catal. Today 2007, 120, 133–138.

15

Peng, Y.; Shang, L.; Cao, Y. T.; Waterhouse, G. I. N.; Zhou, C.; Bian, T.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Copper(I) cysteine complexes: Efficient earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H2 production. Chem. Commun. 2015, 51, 12556–12559.

16

Feng, J.; Liu, J. X.; Wei, G. J.; Zhang, J.; Wang, S. T.; Wang, Z. J.; An, C. H. Solar-driven Pt modified hollow structured CdS photocatalyst for efficient hydrogen evolution. RSC Adv. 2014, 4, 36665–36670.

17

Zong, X.; Han, J. F.; Ma, G. J.; Yan, H. J.; Wu, G. P.; Li, C. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J. Phys. Chem. C 2011, 115, 12202–12208.

18

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

19

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

20

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

21

Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.

22

Wang, T. Y.; Liu, L.; Zhu, Z. W.; Papakonstantinou, P.; Hu, J. B.; Liu, H. Y.; Li, M. X. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 2013, 6, 625–633.

23

Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621–3625.

24

Meng, F.; Li, J. T.; Cushing, S. K.; Zhi, M. J.; Wu, N. Q. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 2013, 135, 10286–10289.

25

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

26

Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

27

Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916– 1923.

28

Laursen, A. B.; Vesborg, P. C. K.; Chorkendorff, I. A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability. Chem. Commun. 2013, 49, 4965–4967.

29

Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

30

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

31

Topsøe, H.; Clausen, B. S.; Massoth, F. E. Hydrotreating Catalysis; Springer: Berlin Heidelberg, 1996.

DOI
32

Feng, J.; An, C. H.; Dai, L. X.; Liu, J. X.; Wei, G. J.; Bai, S.; Zhang, J.; Xiong, Y. J. Long-term production of H2 over Pt/CdS nanoplates under sunlight illumination. Chem. Eng. J. 2016, 283, 351–357.

33

Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

34

Sun, M. Y.; Nelson, A. E.; Adjaye, J. Ab initio DFT study of hydrogen dissociation on MoS2, NiMos, and CoMos: Mechanism, kinetics, and vibrational frequencies. J. Catal. 2005, 233, 411–421.

35

Jang, J. S.; Joshi, U. A.; Lee, J. S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007, 111, 13280–13287.

36

Chen, J.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. 2015, 127, 1226–1230.

37

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

File
nr-9-8-2284_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 February 2016
Revised: 19 April 2016
Accepted: 21 April 2016
Published: 13 June 2016
Issue date: August 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (Nos. 21471160 and 51402362), Huangdao Key Science and Technology Programme (Contract No. 2014-1-50), Shandong Natural Science Foundation (No. ZR2014EMQ012), Qingdao Science and Technology Program for Youth (No. 14-2-4-34-jch), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China.

Return