Journal Home > Volume 9 , Issue 8

Rational design and simple synthesis of one-dimensional nanofibers with high specific surface areas and hierarchically porous structures are still challenging. In the present work, a novel strategy utilizing a thermally removable template was developed to synthesize hierarchically porous N-doped carbon nanofibers (HP-NCNFs) through the use of simple electrospinning technology coupled with subsequent pyrolysis. During the pyrolysis process, ZnO nanoparticles can be formed in situ and act as a thermally removable template due to their decomposition and sublimation under high-temperature conditions. The resulting HP-NCNFs have lengths of up to hundreds of micrometers with an average diameter of 300 nm and possess a hierarchically porous structure throughout. Such unique structures endow HP-NCNFs with a high specific surface area of up to 829.5 m2·g–1, which is 2.6 times higher than that (323.2 m2·g–1) of conventional N-doped carbon nanofibers (NCNFs). Compared with conventional NCNFs, the HP-NCNF catalyst exhibited greatly enhanced catalytic performance and improved kinetics for the oxygen reduction reaction (ORR) in alkaline media. Moreover, the HP-NCNFs even showed better stability and stronger methanol crossover effect tolerance than the commercial Pt-C catalyst. The optimized ORR performance can be attributed to the synergetic contribution of continuous and three-dimensional (3D) cross-linked structures, graphene-like structure on the edge of the HP-NCNFs, high specific surface area, and a hierarchically porous structure.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thermally removable in-situ formed ZnO template for synthesis of hierarchically porous N-doped carbon nanofibers for enhanced electrocatalysis

Show Author's information Shuguang WangZhentao CuiJinwen QinMinhua Cao( )
Key Laboratory of Cluster ScienceMinistry of Education of ChinaBeijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsDepartment of ChemistryBeijing Institute of TechnologyBeijing100081China

Abstract

Rational design and simple synthesis of one-dimensional nanofibers with high specific surface areas and hierarchically porous structures are still challenging. In the present work, a novel strategy utilizing a thermally removable template was developed to synthesize hierarchically porous N-doped carbon nanofibers (HP-NCNFs) through the use of simple electrospinning technology coupled with subsequent pyrolysis. During the pyrolysis process, ZnO nanoparticles can be formed in situ and act as a thermally removable template due to their decomposition and sublimation under high-temperature conditions. The resulting HP-NCNFs have lengths of up to hundreds of micrometers with an average diameter of 300 nm and possess a hierarchically porous structure throughout. Such unique structures endow HP-NCNFs with a high specific surface area of up to 829.5 m2·g–1, which is 2.6 times higher than that (323.2 m2·g–1) of conventional N-doped carbon nanofibers (NCNFs). Compared with conventional NCNFs, the HP-NCNF catalyst exhibited greatly enhanced catalytic performance and improved kinetics for the oxygen reduction reaction (ORR) in alkaline media. Moreover, the HP-NCNFs even showed better stability and stronger methanol crossover effect tolerance than the commercial Pt-C catalyst. The optimized ORR performance can be attributed to the synergetic contribution of continuous and three-dimensional (3D) cross-linked structures, graphene-like structure on the edge of the HP-NCNFs, high specific surface area, and a hierarchically porous structure.

Keywords: oxygen reduction reaction, hierarchically porous structure, zinc oxide, thermally removable, formed in situ

References(39)

1

Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

2

Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.

3

Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.

4

Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

5

Bezerra, C. W. B.; Zhang, L.; Lee, K.; Liu, H. S.; Marques, A. L. B.; Marques, E. P.; Wang, H. J.; Zhang, J. J. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 2008, 53, 4937–4951.

6

Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

7

Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.

8

Liang, H. W.; Zhuang, X. D.; Brüller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.

9

Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 2016, 9, 317–328.

10

Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Space- confinement-induced synthesis of pyridinic- and pyrrolic- nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 52, 11755–11759.

11

Yasuda, S.; Yu, L.; Kim, J.; Murakoshi, K. Selective nitrogen doping in graphene for oxygen reduction reactions. Chem. Commun. 2013, 49, 9627–9629.

12

Shin, D.; Jeong, B.; Mun, B. S.; Jeon, H.; Shin, H.; Baik, J.; Lee, J. On the origin of electrocatalytic oxygen reduction reaction on electrospun nitrogen-carbon species. J. Phys. Chem. C 2013, 117, 11619–11624.

13

Jiang, H. L.; Su, Y. H.; Zhu, Y. H.; Shen, J. H.; Yang, X. L.; Feng, Q.; Li, C. Z. Hierarchical interconnected macro-/ mesoporous Co-containing N-doped carbon for efficient oxygen reduction reactions. J. Mater. Chem. A 2013, 1, 12074–12081.

14

He, W. H.; Jiang, C. H.; Wang, J. B.; Lu, L. H. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew. Chem., Int. Ed. 2014, 53, 9503–9507.

15

Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179–8183.

16

Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/ carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.

17

Liang, J.; Du, X.; Gibson, C.; Du, X. W.; Qiao, S. Z. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 2013, 25, 6226–6231.

18

Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521– 2527.

19

Cao, H. L.; Zhou, X. F.; Zheng, C.; Liu, Z. P. Metal etching method for preparing porous graphene as high performance anode material for lithium-ion batteries. Carbon 2015, 89, 41–46.

20

Zhao, Y.; Hu, C. G.; Song, L.; Wang, L. X.; Shi, G. Q.; Dai, L. M.; Qu, L. T. Functional graphene nanomesh foam. Energy Environ. Sci. 2014, 7, 1913–1918.

21

Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Nitrogen- doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

22

Liu, Y. L.; Shi, C. X.; Xu, X. Y.; Sun, P. C.; Chen, T. H. Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction. J. Power Sources 2015, 283, 389–396.

23

Qiu, Y. J.; Yu, J.; Shi, T. N.; Zhou, X. S.; Bai, X. D.; Huang, J. Y. Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: Large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. J. Power Sources 2011, 196, 9862–9867.

24

Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem., Int. Ed. 2010, 49, 7987–7991.

25

Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H. Nanowire- directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385–14388.

26

Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.; Wu, Z. Y.; Yu, S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.

27

Wang, H. Q.; Zhang, C. F.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium– sulfur batteries. Carbon 2015, 81, 782–787.

28

Wang, K. X.; Wang, Y. G.; Wang, Y. R.; Hosono, E.; Zhou, H. S. Mesoporous carbon nanofibers for supercapacitor application. J. Phys. Chem. C 2009, 113, 1093–1097.

29

Hou, H. L.; Wang, L.; Gao, F. M.; Wei, G. D.; Tang, B.; Yang, W. Y.; Wu, T. General strategy for fabricating thoroughly mesoporous nanofibers. J. Am. Chem. Soc. 2014, 136, 16716–16719.

30

Lee, K. J.; Min, S. H.; Jang, J. Mesoporous nanofibers from dual structure-directing agents in AAO: Mesostructural control and their catalytic applications. Chem. —Eur. J. 2009, 15, 2491–2495.

31

An, G. H.; Ahn, H. J. Activated porous carbon nanofibers using Sn segregation for high-performance electrochemical capacitors. Carbon 2013, 65, 87–96.

32

Wang, S. G.; Cui, Z. T.; Cao, M. H. A template-free method for preparation of cobalt nanoparticles embedded in N-doped carbon nanofibers with a hierarchical pore structure for oxygen reduction. Chem. —Eur. J. 2015, 21, 2165–2172.

33

Strubel, P.; Thieme, S.; Biemelt, T.; Helmer, A.; Oschatz, M.; Brückner, J.; Althues, H.; Kaskel, S. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery. Adv. Funct. Mater. 2015, 25, 287–297.

34

Cui, Z. T.; Wang, S. G.; Zhang, Y. H.; Cao, M. H. Engineering hybrid between nickel oxide and nickel cobaltate to achieve exceptionally high activity for oxygen reduction reaction. J. Power Sources 2014, 272, 808–815.

35

Wang, W.; Sun, Y.; Liu, B.; Wang, S. G.; Cao, M. H. Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 2015, 91, 56–65.

36

Chen, L. F.; Huang, Z. H.; Liang, H. W.; Yao, W. T.; Yu, Z. Y.; Yu, S. H. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 2013, 6, 3331–3338.

37

Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem., Int. Ed. 2013, 52, 2925–2929.

38

Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562.

39

Li, W. H.; Li, M. S.; Wang, M.; Zeng, L. C.; Yu, Y. Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 2015, 13, 693–701.

File
nr-9-8-2270_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 February 2016
Revised: 21 April 2016
Accepted: 21 April 2016
Published: 24 May 2016
Issue date: August 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21471016 and 21271023) and the 111 Project (No. B07012).

Return