Journal Home > Volume 9 , Issue 7

Single-crystal graphene domains grown by chemical vapor deposition (CVD) intrinsically tend to have a six-fold symmetry; however, several factors can influence the growth kinetics, which can in turn lead to the formation of graphene with different shapes. Here we report the growth of oriented large-area pentagonal single-crystal graphene domains on Cu foils by CVD. We found that high-index Cu planes contributed selectively to the formation of pentagonal graphene. Our results indicated that lattice steps present on the crystalline surface of the underlying Cu promoted graphene growth in the direction perpendicular to the steps and finally led to the disappearance of one of the edges forming a pentagon. In addition, hydrogen promoted the formation of pentagonal domains. This work provides new insights into the mechanism of graphene growth.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces

Show Author's information Kailun Xia1,2Vasilii I. Artyukhov3Lifei Sun1Jingying Zheng1Liying Jiao1Boris I. Yakobson3Yingying Zhang1,2( )
Department of ChemistryTsinghua UniversityBeijing100084China
Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
Department of Materials Science and Nano EngineeringRice UniversityHoustonTX77005USA

Abstract

Single-crystal graphene domains grown by chemical vapor deposition (CVD) intrinsically tend to have a six-fold symmetry; however, several factors can influence the growth kinetics, which can in turn lead to the formation of graphene with different shapes. Here we report the growth of oriented large-area pentagonal single-crystal graphene domains on Cu foils by CVD. We found that high-index Cu planes contributed selectively to the formation of pentagonal graphene. Our results indicated that lattice steps present on the crystalline surface of the underlying Cu promoted graphene growth in the direction perpendicular to the steps and finally led to the disappearance of one of the edges forming a pentagon. In addition, hydrogen promoted the formation of pentagonal domains. This work provides new insights into the mechanism of graphene growth.

Keywords: chemical vapor deposition, pentagonal graphene, copper foil, high index plane, large area

References(29)

1

Neto, A. H. C. ; Guinea, F. ; Peres, N. M. R. ; Novoselov, K. S. ; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.

2

Allen, M. J. ; Tung, V. C. ; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132-145.

3

Yin, Z. Y. ; Zhu, J. X. ; He, Q. Y. ; Cao, X. H. ; Tan, C. L. ; Chen, H. Y. ; Yan, Q. Y. ; Zhang, H. Graphene-based materials for solar cell applications. Adv. Energy Mater. 2014, 4, 1300574.

4

Zhu, J. X. ; Yang, D. ; Yin, Z. Y. ; Yan, Q. Y. ; Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 2014, 10, 3480-3498.

5

Huang, X. ; Qi, X. Y. ; Boey, F. ; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-686.

6

Cao, X. H. ; Yin, Z. Y. ; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850-1865.

7

Zhang, W. L. ; Xie, H. H. ; Zhang, R. F. ; Jian, M. Q. ; Wang, C. Y. ; Zheng, Q. S. ; Wei, F. ; Zhang, Y. Y. Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon 2015, 86, 358-362.

8

Dai, B. Y. ; Fu, L. ; Zou, Z. Y. ; Wang, M. ; Xu, H. T. ; Wang, S. ; Liu, Z. F. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2011, 2, 522.

9

Gao, L. B. ; Ren, W. C. ; Xu, H. L. ; Jin, L. ; Wang, Z. X. ; Ma, T. ; Ma, L. P. ; Zhang, Z. Y. ; Fu, Q. ; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

10

Li, X. S. ; Cai, W. W. ; Colombo, L. ; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268-4272.

11

Luo, Z. T. ; Kim, S. ; Kawamoto, N. ; Rappe, A. M. ; Johnson, A. T. C. Growth mechanism of hexagonal-shape graphene flakes with zigzag edges. Acs Nano 2011, 5, 9154-9160.

12

Yan, Z. ; Lin, J. ; Peng, Z. W. ; Sun, Z. Z. ; Zhu, Y. ; Li, L. ; Xiang, C. S. ; Samuel, E. L. ; Kittrell, C. ; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. Acs Nano 2012, 6, 9110-9117.

13

Zhang, Y. ; Zhang, L. Y. ; Kim, P. ; Ge, M. Y. ; Li, Z. ; Zhou, C. W. Vapor trapping growth of single-crystalline graphene flowers: Synthesis, morphology, and electronic properties. Nano Lett. 2012, 12, 2810-2816.

14

Wu, Y. A. ; Robertson, A. W. ; Schäffel, F. ; Speller, S. C. ; Warner, J. H. Aligned rectangular few-layer graphene domains on copper surfaces. Chem. Mater. 2011, 23, 4543-4547.

15

Liu, J. W. ; Wu, J. ; Edwards, C. M. ; Berrie, C. L. ; Moore, D. ; Chen, Z. J. ; Maroni, V. A. ; Paranthaman, M. P. ; Goyal, A. Triangular graphene grain growth on cube-textured Cu substrates. Adv. Funct. Mater. 2011, 21, 3868-3874.

16

Artyukhov, V. I. ; Hao, Y. F. ; Ruoff, R. S. ; Yakobson, B. I. Breaking of symmetry in graphene growth on metal substrates. Phys. Rev. Lett. 2015, 114, 115502.

17

Wofford, J. M. ; Nie, S. ; McCarty, K. F. ; Bartelt, N. C. ; Dubon, O. D. Graphene islands on Cu foils: The interplay between shape, orientation, and defects. Nano Lett. 2010, 10, 4890-4896.

18

Nguyen, V. L. ; Shin, B. G. ; Duong, D. L. ; Kim, S. T. ; Perello, D. ; Lim, Y. J. ; Yuan, Q. H. ; Ding, F. ; Jeong, H. Y. ; Shin, H. S. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 2015, 27, 1376-1382.

19

Zhang, Y. ; Li, Z. ; Kim, P. ; Zhang, L. Y. ; Zhou, C. W. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 2012, 6, 126-132.

20

Vlassiouk, I. ; Regmi, M. ; Fulvio, P. ; Dai, S. ; Datskos, P. ; Eres, G. ; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069-6076.

21

Yan, Z. ; Liu, Y. Y. ; Lin, J. ; Peng, Z. W. ; Wang, G. ; Pembroke, E. ; Zhou, H. Q. ; Xiang, C. S. ; Raji, A. R. O. ; Samuel, E. L. G. et al. Hexagonal graphene onion rings. J. Am. Chem. Soc. 2013, 135, 10755-10762.

22

Sekerka, R. F. Equilibrium and growth shapes of crystals: How do they differ and why should we care? Cryst. Res. Technol. 2005, 40, 291-306.

23

Jung, D. H. ; Kang, C. ; Yoon, D. ; Cheong, H. ; Lee, J. S. Anisotropic behavior of hydrogen in the formation of pentagonal graphene domains. Carbon 2015, 89, 242-248.

24

Artyukhov, V. I. ; Liu, Y. Y. ; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA 2012, 109, 15136-15140.

25

Han, G. H. ; Güneş, F. ; Bae, J. J. ; Kim, E. S. ; Chae, S. J. ; Shin, H. -J. ; Choi, J. -Y. ; Pribat, D. ; Lee, Y. H. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 2011, 11, 4144-4148.

26

Ma, T. ; Ren, W. C. ; Zhang, X. Y. ; Liu, Z. B. ; Gao, Y. ; Yin, L. C. ; Ma, X. L. ; Ding, F. ; Cheng, H. M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386-20391.

27

Yuan, Q. H. ; Yakobson, B. I. ; Ding, F. Edge-catalyst wetting and orientation control of graphene growth by chemical vapor deposition growth. J. Phys. Chem. Lett. 2014, 5, 3093-3099.

28

Hayashi, K. ; Sato, S. ; Yokoyama, N. Anisotropic graphene growth accompanied by step bunching on a dynamic copper surface. Nanotechnology 2013, 24, 025603.

29

Yan, Z. ; Liu, Y. Y. ; Ju, L. ; Peng, Z. W. ; Lin, J. ; Wang, G. ; Zhou, H. Q. ; Xiang, C. S. ; Samuel, E. L. G. ; Kittrell, C. et al. Large hexagonal Bi- and trilayer graphene single crystals with varied interlayer rotations. Angew. Chem., Int. Ed. 2014, 53, 1565-1569.

File
nr-9-7-2182_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 February 2016
Revised: 11 April 2016
Accepted: 14 April 2016
Published: 20 May 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51422204 and 51372132) and the National Basic Research Program of China (No. 2013CB228506).

Return