Journal Home > Volume 9 , Issue 7

Meso-porous Si-coated carbon nanotube (CNT) composite powders were prepared by combining a sol-gel method and the magnesiothermic reduction process. Meso-porous Si-coated CNT electrodes exhibit excellent cycle and rate performances as anodes in Li-ion batteries (LIBs), which can be attributed to the efficient accommodation of volume change from meso-porous Si structure and the enhanced electrical conductivity from CNT core. This simple synthesis and subsequent reduction process provide a scalable route for the large-scale production of Si-C composite nanostructures, which can be utilized in a variety of applications, such as in photocatalysis, photoelectrochemical cells (PECs), and LIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery

Show Author's information Won-Sik KimJonghyun ChoiSeong-Hyeon Hong( )
Department of Materials Science and Engineering and Research Institute of Advanced MaterialsSeoul National University, Seoul, 151-744Republic of Korea

Abstract

Meso-porous Si-coated carbon nanotube (CNT) composite powders were prepared by combining a sol-gel method and the magnesiothermic reduction process. Meso-porous Si-coated CNT electrodes exhibit excellent cycle and rate performances as anodes in Li-ion batteries (LIBs), which can be attributed to the efficient accommodation of volume change from meso-porous Si structure and the enhanced electrical conductivity from CNT core. This simple synthesis and subsequent reduction process provide a scalable route for the large-scale production of Si-C composite nanostructures, which can be utilized in a variety of applications, such as in photocatalysis, photoelectrochemical cells (PECs), and LIBs.

Keywords: Si, carbon nanotube (CNT), meso-porous, magnesiothermic reduction, battery

References(33)

1

Obrovac, M. N. ; Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 2004, 7, A93-A96.

2

Green, M. ; Fielder, E. ; Scrosati, B. ; Wachtler, M. ; Serra Moreno, J. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 2003, 6, A75-A79.

3

Kim, H. ; Seo, M. ; Park, M. -H. ; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146-2149.

4

Chan, C. K. ; Peng, H. L. ; Liu, G. ; McIlwrath, K. ; Zhang, X. F. ; Huggins, R. A. ; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.

5

Jing, S. L. ; Jiang, H. ; Hu, Y. J. ; Li, C. Z. Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries. Nanoscale 2014, 6, 14441-14445.

6

Chen, D. Y. ; Mei, X. ; Ji, G. ; Lu, M. H. ; Xie, J. P. ; Lu, J. M. ; Lee, J. Y. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem., Int. Ed. 2012, 51, 2409-2413.

7

Kim, W. -S. ; Hwa, Y. ; Shin, J. -H. ; Yang, M. ; Sohn, H. -J. ; Hong, S. -H. Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale 2014, 6, 4297-4302.

8

Jing, S. L. ; Jiang, H. ; Hu, Y. J. ; Li, C. Z. Graphene supported mesoporous single crystal silicon on Cu foam as a stable lithium-ion battery anode. J. Mater. Chem. A 2014, 2, 16360- 16364.

9

Hwa, Y. ; Kim, W. -S. ; Hong, S. -H. ; Sohn, H. -J. High capacity and rate capability of core-shell structured nano-Si/C anode for Li-ion batteries. Electrochim. Acta 2012, 71, 201-205.

10

Evanoff, K. ; Khan, J. ; Balandin, A. A. ; Magasinski, A. ; Ready, W. J. ; Fuller, T. F. ; Yushin, G. Towards ultrathick battery electrodes: Aligned carbon nanotube—Enabled architecture. Adv. Mater. 2012, 24, 533-537.

11

Fan, Y. ; Zhang, Q. ; Xiao, Q. Z. ; Wang, X. H. ; Huang, K. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology. Carbon 2013, 59, 264-269.

12

Wang, W. ; Epur, R. ; Kumta, P. N. Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery. Electrochem. Comm. 2011, 13, 429-432.

13

Cui, L. -F. ; Hu, L. B. ; Choi, J. W. ; Cui, Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano 2010, 4, 3671-3678.

14

Chou, S. -L. ; Zhao, Y. ; Wang, J. -Z. ; Chen, Z. -X. ; Liu, H. -K. ; Dou, S. -X. Silicon/single-walled carbon nanotube composite paper as a flexible anode material for lithium ion batteries. J. Phys. Chem. C 2010, 114, 15862-15867.

15

Evanoff, K. ; Benson, J. ; Schauer, M. ; Kovalenko, I. ; Lashmore, D. ; Ready, W. J. ; Yushin, G. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. ACS Nano 2012, 6, 9837-9845.

16

Hu, L. B. ; Liu, N. ; Eskilsson, M. ; Zheng, G. Y. ; McDonough, J. ; Wågberg, L. ; Cui, Y. Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2013, 2, 138-145.

17

Hu, L. B. ; Wu, H. ; Gao, Y. F. ; Cao, A. Y. ; Li, H. B. ; McDough, J. ; Xie, X. ; Zhou, M. ; Cui, Y. Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 2011, 1, 523-527.

18

Jing, S. L. ; Jiang, H. ; Hu, Y. J. ; Shen, J. H. ; Li, C. Z. Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv. Funct. Mater. 2015, 25, 5395-5401.

19

Bao, Z. H. ; Weatherspoon, M. R. ; Shian, S. ; Cai, Y. ; Graham, P. D. ; Allan, S. M. ; Ahmad, G. ; Dickerson, M. B. ; Church, B. C. ; Kang, Z. T. et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 2007, 446, 172-175.

20

Jia, H. P. ; Gao, P. F. ; Yang, J. ; Wang, J. L. ; Nuli, Y. ; Yang, Z. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 2011, 1, 1036-1039.

21

Yoo, J. -K. ; Kim, J. ; Jung, Y. S. ; Kang, K. Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 2012, 24, 5452-5456.

22

Feng, X. J. ; Yang, J. ; Bie, Y. T. ; Wang, J. L. ; Nuli, Y. ; Lu. W. Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries. Nanoscale 2014, 6, 12532-12539.

23

Zhu, X. F. ; Xia, B. Y. ; Guo, M. Y. ; Zhang, Q. ; Li, J. X. Synthesis of carbon nanotube composites with size-controlled silicon nanoparticles. Carbon 2010, 48, 3296-3299.

24

Choi, S. ; Lee, J. C. ; Park, O. ; Chun, M. -J. ; Choi, N. -S. ; Park, S. Synthesis of micro-assembled Si/titanium silicide nanotube anodes for high-performance lithium-ion batteries. J. Mater. Chem. A 2013, 1, 10617-10621.

25

Lipson, A. L. ; Chattopadhyay, S. ; Karmel, H. J. ; Fister, T. T. ; Emery, J. D. ; Dravid, V. P. ; Thackeray, M. M. ; Fenter, P. A. ; Bedzyk, M. J. ; Hersam, M. C. Enhanced lithiation of doped 6H silicon carbide (0001) via high temperature vacuum growth of epitaxial graphene. J. Phys. Chem. C 2012, 116, 20949-20957.

26

Liu, N. ; Huo, K. F. ; McDowell, M. T. ; Zhao, J. ; Cui, Y. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. 2013, 3, 1919.

27

Li, H. ; Huang, X. J. ; Chen, L. Q. ; Zhou, G. W. ; Zhang, Z. ; Yu, D. P. ; Mo, Y. J. ; Pei, N. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 2000, 135, 181-191.

28

Li, J. ; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156-A161.

29

Netz, A. ; Huggins, R. A. ; Weppner, W. The formation and properties of amorphous silicon as negative electrode reactant in lithium systems. J. Power Sources 2003, 119-121, 95-100.

30

Hatchard, T. D. ; Dahn, J. R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 2004, 151, A838-A842.

31

Wang, W. ; Ruiz, I. ; Ahmed, K. ; Bay, H. H. ; George, A. S. ; Wang, J. ; Butler, J. ; Ozkan, M. ; Ozkan, C. S. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes. Small 2014, 10, 3389-3396.

32

Wang, W. ; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium- ion anodes. ACS Nano 2010, 4, 2233-2241.

33

Karki, K. ; Epstein, E. ; Cho, J. -H. ; Jia, Z. ; Li, T. ; Picraux, S. T. ; Wang, C. S. ; Cumings, J. Lithium-assisted electrochemical welding in silicon nanowire battery electrodes. Nano Lett. 2012, 12, 1392−1397.

File
nr-9-7-2174_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 February 2016
Revised: 12 April 2016
Accepted: 17 April 2016
Published: 20 May 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-008226).

Return