Journal Home > Volume 9 , Issue 7

Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets (Fe/Fe2O3@Fe-N-C) using shrimp shell-derived N-doped carbon nanodots as carbon and nitrogen sources in the presence of FeCl3 by a simple pyrolysis approach. Fe/Fe2O3@Fe-N-C obtained at a pyrolysis temperature of 1, 000 ℃ (Fe/Fe2O3@Fe-N-C-1000) possessed a mesoporous structure and high surface area of 747.3 m2·g-1. As an electrocatalyst, Fe/Fe2O3@Fe-N-C-1000 exhibited bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media, comparable to that of commercial Pt/C for ORR and RuO2 for OER, respectively. The Zn-air battery test demonstrated that Fe/Fe2O3@Fe-N-C-1000 had a superior rechargeable performance and cycling stability as an air cathode material with an open circuit voltage of 1.47 V (vs. Ag/AgCl) and a power density of 193 mW·cm-2 at a current density of 220 mA·cm-2. These performances were better than other commercial catalysts with an open circuit voltage of 1.36 V and a power density of 173 mW·cm-2 at a current density of 220 mA·cm-2 (a mixture of commercial Pt/C and RuO2 with a mass ratio of 1:1 was used for the rechargeable Zn-air battery measurements). This work will be helpful to design and develop low-cost and abundant bifunctional oxygen electrocatalysts for future metal-air batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries

Show Author's information Yipeng Zang1,2Haimin Zhang1( )Xian Zhang1,2Rongrong Liu1,2Shengwen Liu1Guozhong Wang1Yunxia Zhang1Huijun Zhao1,3( )
Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031China
University of Science and Technology of ChinaHefei230026China
Centre for Clean Environment and EnergyGriffith UniversityGold Coast CampusGold CoastQLD4222Australia

Abstract

Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets (Fe/Fe2O3@Fe-N-C) using shrimp shell-derived N-doped carbon nanodots as carbon and nitrogen sources in the presence of FeCl3 by a simple pyrolysis approach. Fe/Fe2O3@Fe-N-C obtained at a pyrolysis temperature of 1, 000 ℃ (Fe/Fe2O3@Fe-N-C-1000) possessed a mesoporous structure and high surface area of 747.3 m2·g-1. As an electrocatalyst, Fe/Fe2O3@Fe-N-C-1000 exhibited bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media, comparable to that of commercial Pt/C for ORR and RuO2 for OER, respectively. The Zn-air battery test demonstrated that Fe/Fe2O3@Fe-N-C-1000 had a superior rechargeable performance and cycling stability as an air cathode material with an open circuit voltage of 1.47 V (vs. Ag/AgCl) and a power density of 193 mW·cm-2 at a current density of 220 mA·cm-2. These performances were better than other commercial catalysts with an open circuit voltage of 1.36 V and a power density of 173 mW·cm-2 at a current density of 220 mA·cm-2 (a mixture of commercial Pt/C and RuO2 with a mass ratio of 1:1 was used for the rechargeable Zn-air battery measurements). This work will be helpful to design and develop low-cost and abundant bifunctional oxygen electrocatalysts for future metal-air batteries.

Keywords: oxygen reduction reaction, oxygen evolution reaction, N-doped carbon nanodots, Fe/Fe2O3@Fe-N-doped carbon, rechargeable zinc-air battery

References(39)

1

Li, Y. G. ; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257-5275.

2

Wang, J. ; Wu, H. H. ; Gao, D. F. ; Miao, S. ; Wang, G. X. ; Bao, X. H. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery. Nano Energy 2015, 13, 387-396.

3

Li, Y. G. ; Gong, M. ; Liang, Y. Y. ; Feng, J. ; Kim, J. E. ; Wang, H. L. ; Hong, G. S. ; Zhang, B. ; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

4

Wu, Z. Y. ; Xu, X. X. ; Hu, B. C. ; Liang, H. W. ; Lin, Y. ; Chen, L. F. ; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179-8183.

5

Lee, J. S. ; Park, G. S. ; Kim, S. T. ; Liu, M. L. ; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C- functionalized melamine foam. Angew. Chem., Int. Ed. 2013, 125, 1060-1064.

6

Zhang, J. T. ; Zhao, Z. H. ; Xia, Z. H. ; Dai, L. M. A metal- free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444-452.

7

Jiang, H. L. ; Yao, Y. F. ; Zhu, Y. H. ; Liu, Y. Y. ; Su, Y. H. ; Yang, X. L. ; Li, C. Z. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped graphene-like carbon hybrids as efficient bifunctional oxygen electrocatalysts. ACS Appl. Mater. Interface 2015, 7, 21511-21520.

8

Wu, G. ; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. ACS Chem. Res. 2013, 46, 1878-1889.

9

Xu, J. Y. ; Aili, D. ; Li, Q. F. ; Christensen, E. ; Jensen, J. O. ; Zhang, W. ; Hansen, M. K. ; Liu, G. Y. ; Wang, X. D. ; Bjerrum, N. J. Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy Environ. Sci. 2014, 7, 820-830.

10

Cheng, F. Y. ; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172-2192.

11

Jaouen, F. ; Proietti, E. ; Lefèvre, M. ; Chenitz, R. ; Dodelet, J. -P. ; Wu, G. ; Chung, H. T. ; Johnston, C. M. ; Zelenay, P. Recent advances in non-precious metal catalysis for oxygen- reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 2011, 4, 114-130.

12

Dai, L. M. ; Xue, Y. H. ; Qu, L. T. ; Choi, H. -J. ; Baek, J. -B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823-4892.

13

Liang, Y. Y. ; Li, Y. G. ; Wang, H. L. ; Zhou, J. G. ; Wang, J. ; Regier, T. ; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.

14

Fan, X. J. ; Peng, Z. W. ; Ye, R. Q. ; Zhou, H. Q. ; Guo, X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 2015, 9, 7407-7418.

15

Lin, L. ; Zhu, Q. ; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027-11033.

16

Peng, H. L. ; Mo, Z. Y. ; Liao, S. J. ; Liang, H. G. ; Yang, L. J. ; Luo, F. ; Song, H. Y. ; Zhong, Y. L. ; Zhang, B. Q. High performance Fe- and N- doped carbon catalyst with graphene structure for oxygen reduction. Sci. Rep. 2013, 3, 1765.

17

Deng, D. H. ; Yu, L. ; Chen, X. Q. ; Wang, G. X. ; Jin, L. ; Pan, X. L. ; Deng, J. ; Sun, G. Q. ; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371-375.

18

Wu, Z. -S. ; Yang, S. B. ; Sun, Y. ; Parvez, K. ; Feng, X. L. ; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082-9085.

19

Huang, J. J. ; Zhu, N. W. ; Yang, T. T. ; Zhang, T. P. ; Wu, P. X. ; Dang, Z. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens. Bioelectron. 2015, 72, 332-339.

20

Wu, T. X. ; Zhang, H. M. ; Zhang, X. ; Zhang, Y. X. ; Zhao, H. J. ; Wang, G. Z. A low-cost cementite (Fe3C) nanocrystal@N- doped graphitic carbon electrocatalyst for efficient oxygen reduction. Phys. Chem. Chem. Phys. 2015, 17, 27527-27533.

21

Jia, Q. Y. ; Ramaswamy, N. ; Hafiz, H. ; Tylus, U. ; Strickland, K. ; Wu, G. ; Barbiellini, B. ; Bansil, A. ; Holby, E. F. ; Zelenay, P. et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496-12505.

22

Huang, D. K. ; Luo, Y. P. ; Li, S. H. ; Wang, M. K. ; Shen, Y. Hybrid of Fe@Fe3O4 core-shell nanoparticle and iron-nitrogen- doped carbon material as an efficient electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2015, 174, 933-939.

23

Cao, R. G. ; Thapa, R. ; Kim, H. ; Xu, X. D. ; Kim, M. G. ; Li, Q. ; Park, N. ; Liu, M. L. ; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.

24

Zhu, C. Z. ; Zhai, J. F. ; Dong, S. J. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun. 2012, 48, 9367-9369.

25

Zhang, H. M. ; Wang, Y. ; Wang, D. ; Li, Y. B. ; Liu, X. L. ; Liu, P. R. ; Yang, H. G. ; An, T. C. ; Tang, Z. Y. ; Zhao, H. J. Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction. Small 2014, 10, 3371-3378.

26

Zhang, H. M. ; Chen, J. Y. ; Li, Y. B. ; Liu, P. R. ; Wang, Y. ; An, T. C. ; Zhao, H. J. Nitrogen-doped carbon nanodots@nanospheres as an efficient electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2015, 165, 7-13.

27

Liu, R. R. ; Zhang, H. M. ; Liu, S. W. ; Zhang, X. ; Wu, T. X. ; Ge, X. ; Zang, Y. P. ; Zhao, H. J. ; Wang, G. Z. Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 2016, 18, 4095-4101.

28

Gong, K. P. ; Du, F. ; Xia, Z. H. ; Durstock, M. ; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760-764.

29

Qu, L. T. ; Liu, Y. ; Baek, J. -B. ; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321-1326.

30

Li, Y. B. ; Zhang, H. M. ; Wang, Y. ; Liu, P. R. ; Yang, H. G. ; Yao, X. D. ; Wang, D. ; Tang, Z. Y. ; Zhao, H. J. A self- sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts. Energy Environ. Sci. 2014, 7, 3720-3726.

31

Liang, J. ; Jiao, Y. ; Jaroniec, M. ; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496-11500.

32

Liang, H. W. ; Wei, W. ; Wu, Z. S. ; Feng, X. L. ; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002-16005.

33

Teng, X. W. ; Black, D. ; Watkins, N. J. ; Gao, Y. L. ; Yang, H. Platinum-maghemite core-shell nanoparticles using a sequential synthesis. Nano Lett. 2003, 3, 261-264.

34

Zhao, Y. ; Watanabe, K. ; Hashimoto, K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. J. Am. Chem. Soc. 2012, 134, 19528-19531.

35

Liu, S. W. ; Wang, X. B. ; Zhao, H. J. ; Cai, W. P. Micro/ nano-scaled carbon spheres based on hydrothermal carbonization of agarose. Colloid. Surf. A 2015, 484, 386-393.

36

Liu, R. L. ; Wu, D. Q. ; Feng, X. L. ; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed. 2010, 49, 2565-2569.

37

Yang, W. X. ; Liu, X. J. ; Yue, X. Y. ; Jia, J. B. ; Guo, S. J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436-1439.

38

Gorlin, Y. ; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612-13614.

39

Tylus, U. ; Jia, Q. Y. ; Strickland, K. ; Ramaswamy, N. ; Serov, A. ; Atanassov, P. ; Mukerjee, S. Elucidating oxygen reduction active sites in pyrolyzed metal-nitrogen coordinated non-precious-metal electrocatalyst systems. J. Phys. Chem. C 2014, 118, 8999-9008.

File
nr-9-7-2123_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 January 2016
Revised: 29 March 2016
Accepted: 14 April 2016
Published: 20 May 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51372248 and 51432009), the Instrument Developing Project of the Chinese Academy of Sciences (No. yz201421) and the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, the CAS Pioneer Hundred Talents Program and the Users with Potential Program (No. 2015HSC- UP006, Hefei Science Center, CAS), China.

Return