Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets (Fe/Fe2O3@Fe-N-C) using shrimp shell-derived N-doped carbon nanodots as carbon and nitrogen sources in the presence of FeCl3 by a simple pyrolysis approach. Fe/Fe2O3@Fe-N-C obtained at a pyrolysis temperature of 1, 000 ℃ (Fe/Fe2O3@Fe-N-C-1000) possessed a mesoporous structure and high surface area of 747.3 m2·g-1. As an electrocatalyst, Fe/Fe2O3@Fe-N-C-1000 exhibited bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media, comparable to that of commercial Pt/C for ORR and RuO2 for OER, respectively. The Zn-air battery test demonstrated that Fe/Fe2O3@Fe-N-C-1000 had a superior rechargeable performance and cycling stability as an air cathode material with an open circuit voltage of 1.47 V (vs. Ag/AgCl) and a power density of 193 mW·cm-2 at a current density of 220 mA·cm-2. These performances were better than other commercial catalysts with an open circuit voltage of 1.36 V and a power density of 173 mW·cm-2 at a current density of 220 mA·cm-2 (a mixture of commercial Pt/C and RuO2 with a mass ratio of 1:1 was used for the rechargeable Zn-air battery measurements). This work will be helpful to design and develop low-cost and abundant bifunctional oxygen electrocatalysts for future metal-air batteries.
Li, Y. G. ; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257-5275.
Wang, J. ; Wu, H. H. ; Gao, D. F. ; Miao, S. ; Wang, G. X. ; Bao, X. H. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery. Nano Energy 2015, 13, 387-396.
Li, Y. G. ; Gong, M. ; Liang, Y. Y. ; Feng, J. ; Kim, J. E. ; Wang, H. L. ; Hong, G. S. ; Zhang, B. ; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.
Wu, Z. Y. ; Xu, X. X. ; Hu, B. C. ; Liang, H. W. ; Lin, Y. ; Chen, L. F. ; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179-8183.
Lee, J. S. ; Park, G. S. ; Kim, S. T. ; Liu, M. L. ; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C- functionalized melamine foam. Angew. Chem., Int. Ed. 2013, 125, 1060-1064.
Zhang, J. T. ; Zhao, Z. H. ; Xia, Z. H. ; Dai, L. M. A metal- free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444-452.
Jiang, H. L. ; Yao, Y. F. ; Zhu, Y. H. ; Liu, Y. Y. ; Su, Y. H. ; Yang, X. L. ; Li, C. Z. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped graphene-like carbon hybrids as efficient bifunctional oxygen electrocatalysts. ACS Appl. Mater. Interface 2015, 7, 21511-21520.
Wu, G. ; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. ACS Chem. Res. 2013, 46, 1878-1889.
Xu, J. Y. ; Aili, D. ; Li, Q. F. ; Christensen, E. ; Jensen, J. O. ; Zhang, W. ; Hansen, M. K. ; Liu, G. Y. ; Wang, X. D. ; Bjerrum, N. J. Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy Environ. Sci. 2014, 7, 820-830.
Cheng, F. Y. ; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172-2192.
Jaouen, F. ; Proietti, E. ; Lefèvre, M. ; Chenitz, R. ; Dodelet, J. -P. ; Wu, G. ; Chung, H. T. ; Johnston, C. M. ; Zelenay, P. Recent advances in non-precious metal catalysis for oxygen- reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 2011, 4, 114-130.
Dai, L. M. ; Xue, Y. H. ; Qu, L. T. ; Choi, H. -J. ; Baek, J. -B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823-4892.
Liang, Y. Y. ; Li, Y. G. ; Wang, H. L. ; Zhou, J. G. ; Wang, J. ; Regier, T. ; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.
Fan, X. J. ; Peng, Z. W. ; Ye, R. Q. ; Zhou, H. Q. ; Guo, X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 2015, 9, 7407-7418.
Lin, L. ; Zhu, Q. ; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027-11033.
Peng, H. L. ; Mo, Z. Y. ; Liao, S. J. ; Liang, H. G. ; Yang, L. J. ; Luo, F. ; Song, H. Y. ; Zhong, Y. L. ; Zhang, B. Q. High performance Fe- and N- doped carbon catalyst with graphene structure for oxygen reduction. Sci. Rep. 2013, 3, 1765.
Deng, D. H. ; Yu, L. ; Chen, X. Q. ; Wang, G. X. ; Jin, L. ; Pan, X. L. ; Deng, J. ; Sun, G. Q. ; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371-375.
Wu, Z. -S. ; Yang, S. B. ; Sun, Y. ; Parvez, K. ; Feng, X. L. ; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082-9085.
Huang, J. J. ; Zhu, N. W. ; Yang, T. T. ; Zhang, T. P. ; Wu, P. X. ; Dang, Z. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens. Bioelectron. 2015, 72, 332-339.
Wu, T. X. ; Zhang, H. M. ; Zhang, X. ; Zhang, Y. X. ; Zhao, H. J. ; Wang, G. Z. A low-cost cementite (Fe3C) nanocrystal@N- doped graphitic carbon electrocatalyst for efficient oxygen reduction. Phys. Chem. Chem. Phys. 2015, 17, 27527-27533.
Jia, Q. Y. ; Ramaswamy, N. ; Hafiz, H. ; Tylus, U. ; Strickland, K. ; Wu, G. ; Barbiellini, B. ; Bansil, A. ; Holby, E. F. ; Zelenay, P. et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496-12505.
Huang, D. K. ; Luo, Y. P. ; Li, S. H. ; Wang, M. K. ; Shen, Y. Hybrid of Fe@Fe3O4 core-shell nanoparticle and iron-nitrogen- doped carbon material as an efficient electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2015, 174, 933-939.
Cao, R. G. ; Thapa, R. ; Kim, H. ; Xu, X. D. ; Kim, M. G. ; Li, Q. ; Park, N. ; Liu, M. L. ; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.
Zhu, C. Z. ; Zhai, J. F. ; Dong, S. J. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun. 2012, 48, 9367-9369.
Zhang, H. M. ; Wang, Y. ; Wang, D. ; Li, Y. B. ; Liu, X. L. ; Liu, P. R. ; Yang, H. G. ; An, T. C. ; Tang, Z. Y. ; Zhao, H. J. Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction. Small 2014, 10, 3371-3378.
Zhang, H. M. ; Chen, J. Y. ; Li, Y. B. ; Liu, P. R. ; Wang, Y. ; An, T. C. ; Zhao, H. J. Nitrogen-doped carbon nanodots@nanospheres as an efficient electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2015, 165, 7-13.
Liu, R. R. ; Zhang, H. M. ; Liu, S. W. ; Zhang, X. ; Wu, T. X. ; Ge, X. ; Zang, Y. P. ; Zhao, H. J. ; Wang, G. Z. Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 2016, 18, 4095-4101.
Gong, K. P. ; Du, F. ; Xia, Z. H. ; Durstock, M. ; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760-764.
Qu, L. T. ; Liu, Y. ; Baek, J. -B. ; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321-1326.
Li, Y. B. ; Zhang, H. M. ; Wang, Y. ; Liu, P. R. ; Yang, H. G. ; Yao, X. D. ; Wang, D. ; Tang, Z. Y. ; Zhao, H. J. A self- sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts. Energy Environ. Sci. 2014, 7, 3720-3726.
Liang, J. ; Jiao, Y. ; Jaroniec, M. ; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496-11500.
Liang, H. W. ; Wei, W. ; Wu, Z. S. ; Feng, X. L. ; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002-16005.
Teng, X. W. ; Black, D. ; Watkins, N. J. ; Gao, Y. L. ; Yang, H. Platinum-maghemite core-shell nanoparticles using a sequential synthesis. Nano Lett. 2003, 3, 261-264.
Zhao, Y. ; Watanabe, K. ; Hashimoto, K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. J. Am. Chem. Soc. 2012, 134, 19528-19531.
Liu, S. W. ; Wang, X. B. ; Zhao, H. J. ; Cai, W. P. Micro/ nano-scaled carbon spheres based on hydrothermal carbonization of agarose. Colloid. Surf. A 2015, 484, 386-393.
Liu, R. L. ; Wu, D. Q. ; Feng, X. L. ; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed. 2010, 49, 2565-2569.
Yang, W. X. ; Liu, X. J. ; Yue, X. Y. ; Jia, J. B. ; Guo, S. J. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436-1439.
Gorlin, Y. ; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612-13614.
Tylus, U. ; Jia, Q. Y. ; Strickland, K. ; Ramaswamy, N. ; Serov, A. ; Atanassov, P. ; Mukerjee, S. Elucidating oxygen reduction active sites in pyrolyzed metal-nitrogen coordinated non-precious-metal electrocatalyst systems. J. Phys. Chem. C 2014, 118, 8999-9008.