Journal Home > Volume 9 , Issue 7

Catalysts for the oxygen reduction reaction (ORR) play an important role in fuel cells. Alternative non-precious metal catalysts with comparable ORR activity to Pt-based catalysts are highly desirable for the development of fuel cells. In this work, we report for the first time a spinel MnCo2O4/C ORR catalyst consisting of uniform MnCo2O4 nanoparticles cross-linked with two-dimensional (2D) porous carbon nanosheets (abbreviated as porous MnCo2O4/C nanosheets), in which glucose is used as the carbon source and NaCl as the template. The obtained porous MnCo2O4/C nanosheets present the combined properties of an interconnected porous architecture and a large surface area (175.3 m2·g-1), as well as good electrical conductivity (1.15 × 102 S·cm-1). Thus, the as-prepared MnCo2O4/C nanosheets efficiently facilitate electrolyte diffusion and offer an expedite transport path for reactants and electrons during the ORR. As a result, the as-prepared porous MnCo2O4/C nanosheet catalyst exhibits enhanced ORR activity with a higher onset potential and current density than those of its counterparts, including pure MnCo2O4, carbon nanosheets, and Vulcan XC-72R carbon. More importantly, the porous MnCo2O4/C nanosheets exhibit a comparable electrocatalytic activity but superior stability and tolerance toward methanol crossover effects than a high-performance Pt/C catalyst in alkaline medium. The synthetic strategy outlined here can be extended to other nonprecious metal catalysts for application in electrochemical energy conversion.

File
nr-9-7-2110_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 January 2016
Revised: 18 March 2016
Accepted: 14 April 2016
Published: 24 May 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (Nos. 21576139, 21503111, 21376122, and 21273116), Jiangsu Provincial Natural Science Foundation of Jiangsu Province (No. BK20140926), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130202120010), the Key Science and Technology Program of Shaanxi Province, China (No. 2014K10-06), Fundamental Research Funds for the Central Universities (No. GK201503038), China Scholarship Council (CSC, 201506860013), University Postgraduate Research and Innovation Project in Jiangsu Province (No. KYZZ15_0213), National and Local Joint Engineering Research Center of Biomedical Functional Material, and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors also thank John B. Goodenough of the university of Texas at Austin for his support and help.

Return