Journal Home > Volume 9 , Issue 7

Catalysts for the oxygen reduction reaction (ORR) play an important role in fuel cells. Alternative non-precious metal catalysts with comparable ORR activity to Pt-based catalysts are highly desirable for the development of fuel cells. In this work, we report for the first time a spinel MnCo2O4/C ORR catalyst consisting of uniform MnCo2O4 nanoparticles cross-linked with two-dimensional (2D) porous carbon nanosheets (abbreviated as porous MnCo2O4/C nanosheets), in which glucose is used as the carbon source and NaCl as the template. The obtained porous MnCo2O4/C nanosheets present the combined properties of an interconnected porous architecture and a large surface area (175.3 m2·g-1), as well as good electrical conductivity (1.15 × 102 S·cm-1). Thus, the as-prepared MnCo2O4/C nanosheets efficiently facilitate electrolyte diffusion and offer an expedite transport path for reactants and electrons during the ORR. As a result, the as-prepared porous MnCo2O4/C nanosheet catalyst exhibits enhanced ORR activity with a higher onset potential and current density than those of its counterparts, including pure MnCo2O4, carbon nanosheets, and Vulcan XC-72R carbon. More importantly, the porous MnCo2O4/C nanosheets exhibit a comparable electrocatalytic activity but superior stability and tolerance toward methanol crossover effects than a high-performance Pt/C catalyst in alkaline medium. The synthetic strategy outlined here can be extended to other nonprecious metal catalysts for application in electrochemical energy conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst

Show Author's information Gengtao Fu1,3,§Zhenyuan Liu1,§Jingfei Zhang1Jiayan Wu1Lin Xu1Dongmei Sun1Jubing Zhang1Yawen Tang1( )Pei Chen2( )
Jiangsu Key Laboratory of New Power BatteriesJiangsu Collaborative Innovation Centre of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
Key Laboratory of Applied Surface and Colloid Chemistry (MOE)School of Materials Science and EngineeringShaanxi Normal UniversityXi'an710062China
Materials Science and Engineering Program & Texas Materials Institutethe University of Texas at AustinAustinTexas78712USA

§These authors contributed equally to this work.

Abstract

Catalysts for the oxygen reduction reaction (ORR) play an important role in fuel cells. Alternative non-precious metal catalysts with comparable ORR activity to Pt-based catalysts are highly desirable for the development of fuel cells. In this work, we report for the first time a spinel MnCo2O4/C ORR catalyst consisting of uniform MnCo2O4 nanoparticles cross-linked with two-dimensional (2D) porous carbon nanosheets (abbreviated as porous MnCo2O4/C nanosheets), in which glucose is used as the carbon source and NaCl as the template. The obtained porous MnCo2O4/C nanosheets present the combined properties of an interconnected porous architecture and a large surface area (175.3 m2·g-1), as well as good electrical conductivity (1.15 × 102 S·cm-1). Thus, the as-prepared MnCo2O4/C nanosheets efficiently facilitate electrolyte diffusion and offer an expedite transport path for reactants and electrons during the ORR. As a result, the as-prepared porous MnCo2O4/C nanosheet catalyst exhibits enhanced ORR activity with a higher onset potential and current density than those of its counterparts, including pure MnCo2O4, carbon nanosheets, and Vulcan XC-72R carbon. More importantly, the porous MnCo2O4/C nanosheets exhibit a comparable electrocatalytic activity but superior stability and tolerance toward methanol crossover effects than a high-performance Pt/C catalyst in alkaline medium. The synthetic strategy outlined here can be extended to other nonprecious metal catalysts for application in electrochemical energy conversion.

Keywords: carbon, oxygen reduction reaction, electrocatalysis, porous nanosheets, spinel MnCo2O4

References(55)

1

Stambouli, A. B. ; Traversa, E. Fuel cells, an alternative to standard sources of energy. Renew. Sust. Energ. Rev. 2002, 6, 295-304.

2

Carrette, L. ; Friedrich, K. A. ; Stimming, U. Fuel cells: Principles, types, fuels, and applications. ChemPhysChem 2000, 1, 162-193.

DOI
3

Bashyam, R. ; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63-66.

4

Feng, J. ; Liang, Y. Y. ; Wang, H. L. ; Li, Y. G. ; Zhang, B. ; Zhou, J. G. ; Wang, J. ; Regier, T. ; Dai, H. J. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Res. 2012, 5, 718-725.

5

Huang, D. K. ; Luo, Y. P. ; Li, S. H. ; Zhang, B. Y. ; Shen, Y. ; Wang, M. K. Active catalysts based on cobalt oxide@cobalt/ N-C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Res. 2014, 7, 1054-1064.

6

Yamamoto, K. ; Imaoka, T. ; Chun, W. -J. ; Enoki, O. ; Katoh, H. ; Takenaga, M. ; Sonoi, A. Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat. Chem. 2009, 1, 397-402.

7

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43-51.

8

Cao, T. ; Wang, D. S. ; Zhang, J. T. ; Cao, C. B. ; Li, Y. D. Bamboo-like nitrogen-doped carbon nanotubes with Co nanoparticles encapsulated at the tips: Uniform and large- scale synthesis and high-performance electrocatalysts for oxygen reduction. Chem. -Eur. J. 2015, 21, 14022-14029.

9

Shi, H. ; Shen, Y. F. ; He, F. ; Li, Y. ; Liu, A. R. ; Liu, S. Q. ; Zhang, Y. J. Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 15704-15716.

10

Zhang, Y. J. ; Fugane, K. ; Mori, T. ; Niu, L. ; Ye, J. H. Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis. J. Mater. Chem. 2012, 22, 6575-6580.

11

Tahir, M. ; Mahmood, N. ; Zhang, X. X. ; Mahmood, T. ; Butt, F. K. ; Aslam, I. ; Tanveer, M. ; Idrees, F. ; Khalid, S. ; Shakir, I. et al. Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res. 2015, 8, 3725-3736.

12

Ma, Z. L. ; Dou, S. ; Shen, A. L. ; Tao, L. ; Dai, L. M. ; Wang, S. Y. Sulfur-doped graphene derived from cycled lithium- sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2015, 127, 1908-1912.

13

Żółtowski, P. ; Dražić, D. M. ; Vorkapić, L. Carbon-air electrode with regenerative short time overload capacity: Part 1. Effect of manganese dioxide. J. Appl. Electrochem. 1973, 3, 271-283.

14

Bragg, W. H. The structure of magnetite and the spinels. Nature 1915, 95, 561.

15

Wu, J. H. ; Dou, S. ; Shen, A. L. ; Wang, X. ; Ma, Z. L. ; Ouyang, C. B. ; Wang, S. Y. One-step hydrothermal synthesis of NiCo2S4-rGO as an efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 20990-20995.

16

Yang, H. C. ; Hu, F. ; Zhang, Y. J. ; Shi, L. Y. ; Wang, Q. B. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts. Nano Res. 2016, 9, 207-213.

17

Liang, Y. Y. ; Wang, H. L. ; Zhou, J. G. ; Li, Y. G. ; Wang, J. ; Regier, T. ; Dai, H. J. Covalent hybrid of spinel manganese- cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517-3523.

18

Liang, Y. Y. ; Li, Y. G. ; Wang, H. L. ; Zhou, J. G. ; Wang, J. ; Regier, T. ; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.

19

Li, C. ; Han, X. P. ; Cheng, F. Y. ; Hu, Y. X. ; Chen, C. C. ; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.

20

Zhu, C. Z. ; Du, D. ; Eychmüller, A. ; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896-8943.

21

Walcarius, A. Mesoporous materials and electrochemistry. Chem. Soc. Rev. 2013, 42, 4098-4140.

22

Xu, Y. ; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439-2450.

23

Zhu, C. Z. ; Li, H. ; Fu, S. F. ; Du, D. ; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517-531.

24

Ji, Y. J. ; Wu, Y. ; Zhao, G. F. ; Wang, D. S. ; Liu, L. ; He, W. ; Li, Y. D. Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone. Nano Res. 2015, 8, 2706-2713.

25

Cao, X. C. ; Wu, J. ; Jin, C. ; Tian, J. H. ; Strasser, P. ; Yang, R. Z. MnCo2O4 anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li-O2 batteries. ACS Catal. 2015, 5, 4890-4896.

26

Xu, Y. J. ; Tsou, A. ; Fu, Y. ; Wang, J. ; Tian, J. -H. ; Yang, R. Z. Carbon-coated perovskite BaMnO3 porous nanorods with enhanced electrocatalytic perporites for oxygen reduction and oxygen evolution. Electrochim. Acta 2015, 174, 551-556.

27

Lee, J. S. ; Park, G. S. ; Kim, S. T. ; Liu, M. L. ; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C- functionalized melamine foam. Angew. Chem., Int. Ed. 2013, 125, 1060-1064.

28

Cong, H. -P. ; Wang, P. ; Gong, M. ; Yu, S. -H. Facile synthesis of mesoporous nitrogen-doped graphene: An efficient methanol-tolerant cathodic catalyst for oxygen reduction reaction. Nano Energy 2014, 3, 55-63.

29

Bard, A. J. ; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 1980.

30

Gao, S. Y. ; Geng, K. R. Facile construction of Mn3O4 nanorods coated by a layer of nitrogen-doped carbon with high activity for oxygen reduction reaction. Nano Energy 2014, 6, 44-50.

31

Du, C. C. ; Huang, H. ; Feng, X. ; Wu, S. Y. ; Song, W. B. Confining MoS2 nanodots in 3D porous nitrogen-doped graphene with amendable ORR performance. J. Mater. Chem. A 2015, 3, 7616-7622.

32

Li, R. ; Wei, Z. D. ; Gou, X. L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 2015, 5, 4133-4142.

33

Jung, J. I. ; Jeong, H. Y. ; Lee, J. S. ; Kim, M. G. ; Cho, J. A bifunctional perovskite catalyst for oxygen reduction and evolution. Angew. Chem., Int. Ed. 2014, 126, 4670-4674.

34

Xu, Y. X. ; Li, W. Y. ; Zhang, F. ; Zhang, X. L. ; Zhang, W. J. ; Lee, C. -S. ; Tang, Y. B. In situ incorporation of FeS nanoparticles/carbon nanosheets composite with an interconnected porous structure as a high-performance anode for lithium ion batteries. J. Mater. Chem. A 2016, 4, 3697-3703.

35

Li, W. Y. ; Tang, Y. B. ; Kang, W. P. ; Zhang, Z. Y. ; Yang, X. ; Zhu, Y. ; Zhang, W. J. ; Lee, C. S. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. Small 2015, 11, 1345-1351.

36

Kang, E. ; Jung, Y. S. ; Cavanagh, A. S. ; Kim, G. H. ; George, S. M. ; Dillon, A. C. ; Kim, J. K. ; Lee, J. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2011, 21, 2430-2438.

37

Chen, L. ; Wang, Z. Y. ; He, C. N. ; Zhao, N. Q. ; Shi, C. S. ; Liu, E. Z. ; Li, J. J. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 9537-9545.

38

He, C. N. ; Wu, S. ; Zhao, N. Q. ; Shi, C. S. ; Liu, E. Z. ; Li, J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459-4469.

39

Zhao, L. ; Wang, L. ; Yu, P. ; Zhao, D. D. ; Tian, C. G. ; Feng, H. ; Ma, J. ; Fu, H. G. A chromium nitride/carbon nitride containing graphitic carbon nanocapsule hybrid as a Pt-free electrocatalyst for oxygen reduction. Chem. Commun. 2015, 51, 12399-12402.

40

Kim, J. G. ; Kim, Y. ; Noh, Y. ; Kim, W. B. MnCo2O4 nanowires anchored on reduced graphene oxide sheets as effective bifunctional catalysts for Li-O2 battery cathodes. ChemSusChem 2015, 8, 1752-1760.

41

Zhou, Y. S. ; Chen, G. ; Yu, Y. G. ; Yan, C. S. ; Sun, J. X. ; He, F. Synthesis of metal oxide nanosheets through a novel approach for energy applications. J. Mater. Chem. A 2016, 4, 781-784.

42

Wang, X. B. ; Zhang, Y. J. ; Zhi, C. Y. ; Wang, X. ; Tang, D. M. ; Xu, Y. B. ; Weng, Q. H. ; Jiang, X. F. ; Mitome, M. ; Golberg, D. et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 2013, 4, 2905.

43

Oh, D. ; Qi, J. J. ; Han, B. H. ; Zhang, G. R. ; Carney, T. J. ; Ohmura, J. ; Zhang, Y. ; Shao-Horn, Y. ; Belcher, A. M. M13 virus-directed synthesis of nanostructured metal oxides for lithium-oxygen batteries. Nano Lett. 2014, 14, 4837-4845.

44

Ge, X. M. ; Liu, Y. Y. ; Goh, F. W. T. ; Hor, T. S. A. ; Zong, Y. ; Xiao, P. ; Zhang, Z. ; Lim, S. H. ; Li, B. ; Wang, X. et al. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl. Mater. Interfaces 2014, 6, 12684-12691.

45

Liang, J. ; Zhou, R. F. ; Chen, X. M. ; Tang, Y. H. ; Qiao, S. Z. Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv. Mater. 2014, 26, 6074-6079.

46

Fu, G. T. ; Wu, K. ; Lin, J. ; Tang, Y. W. ; Chen, Y. ; Zhou, Y. M. ; Lu, T. H. One-pot water-based synthesis of Pt-Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 2013, 117, 9826-9834.

47

Zhao, A. Q. ; Masa, J. ; Xia, W. ; Maljusch, A. ; Willinger, M. -G. ; Clavel, G. ; Xie, K. P. ; Schlögl, R. ; Schuhmann, W. ; Muhler, M. Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting. J. Am. Chem. Soc. 2014, 136, 7551-7554.

48

Zhang, G. Q. ; Xia, B. Y. ; Wang, X. ; Lou, X. W. Strongly coupled NiCo2O4-rGO hybrid nanosheets as a methanol- tolerant electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2014, 26, 2408-2412.

49

Xia, X. H. ; Wang, Y. D. ; Wang, D. H. ; Zhang, Y. Q. ; Fan, Z. X. ; Tu, J. P. ; Zhang, H. ; Fan, H. J. Atomic-layer- deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. Nano Energy 2016, 20, 244-253.

50

Masa, J. ; Xia, W. ; Sinev, I. ; Zhao, A. Q. ; Sun, Z. Y. ; Grützke, S. ; Weide, P. ; Muhler, M. ; Schuhmann, W. MnxOy/ NC and CoxOy/NC nanoparticles embedded in a nitrogen- doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 2014, 53, 8508-8512.

51

Cheng, F. Y. ; Shen, J. ; Peng, B. ; Pan, Y. D. ; Tao, Z. L. ; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79-84.

52

Wang, L. ; Zhao, X. ; Lu, Y. H. ; Xu, M. W. ; Zhang, D. W. ; Ruoff, R. S. ; Stevenson, K. J. ; Goodenough, J. B. CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J. Electrochem. Soc. 2011, 158, A1379-A1382.

53

Hu, Y. ; Jensen, J. O. ; Zhang, W. ; Cleemann, L. N. ; Xing, W. ; Bjerrum, N. J. ; Li, Q. F. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem., Int. Ed. 2014, 53, 3675-3679.

54

Ma, S. C. ; Sun, L. Q. ; Cong, L. ; Gao, X. G. ; Yao, C. ; Guo, X. ; Tai, L. H. ; Mei, P. ; Zeng, Y. P. ; Xie, H. M. et al. Multiporous MnCo2O4 microspheres as an efficient bifunctional catalyst for nonaqueous Li-O2 batteries. J. Phys. Chem. C 2013, 117, 25890-25897.

55

De Koninck, M. ; Marsan, B. MnxCu1−xCo2O4 used as bifunctional electrocatalyst in alkaline medium. Electrochim. Acta 2008, 53, 7012-7021.

File
nr-9-7-2110_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 January 2016
Revised: 18 March 2016
Accepted: 14 April 2016
Published: 24 May 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (Nos. 21576139, 21503111, 21376122, and 21273116), Jiangsu Provincial Natural Science Foundation of Jiangsu Province (No. BK20140926), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130202120010), the Key Science and Technology Program of Shaanxi Province, China (No. 2014K10-06), Fundamental Research Funds for the Central Universities (No. GK201503038), China Scholarship Council (CSC, 201506860013), University Postgraduate Research and Innovation Project in Jiangsu Province (No. KYZZ15_0213), National and Local Joint Engineering Research Center of Biomedical Functional Material, and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors also thank John B. Goodenough of the university of Texas at Austin for his support and help.

Return