Journal Home > Volume 9 , Issue 7

The biodistribution of gold nanoparticles (AuNPs) is closely related to toxicological effects and is of great concern because of their potential application in diverse biomedical areas. However, with the discovery of novel anatomic and histological structures for fluid transport, the underlying mechanisms involved in the in vivo transport and biodistribution of AuNPs require further in-depth investigations. In the current study, we investigated the biodistribution of 10-nm AuNPs in rats after intervaginal space injection (ISI) in the tarsal tunnel, where a focal point of tendons, vessels, and nerve fibers may optimally connect to other remote connective tissues. The intravenous injection (IVI) of AuNPs served as a control. The blood and organs were collected at 5, 15, and 30 min and at 1, 4, 12, and 24 h after injection for quantitative analysis of Au distribution with inductively coupled plasma mass spectrometry (ICP-MS). IVI and ISI yielded significantly different results: The AuNP content in the blood after ISI was much lower than that after IVI; was similar in the lungs, heart, and intestines; and was higher in the skin and muscle. These findings were supported by the ratios of AuNP content and relative organ AuNP distribution proportions. Our results demonstrated a fast, direct, and the circulation-independent AuNP–organ transport pathway, which may improve our understanding of physiological and pathological biodistribution processes in biological systems. Furthermore, these results provide novel insights into the in vivo transport and biodistribution of AuNPs, which may lead to novel and efficient therapeutic and administration strategies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An in vivo study of the biodistribution of gold nanoparticles after intervaginal space injection in the tarsal tunnel

Show Author's information Xiaoli Shi1Yuting Zhu1Wenda Hua1Yinglu Ji1Qing Ha1Xinxiao Han1Yang Liu1Jingwei Gao1Qiang Zhang1Sidi Liu1Keli Ren1Xiaochun Wu1Hongyi Li2( )Dong Han1( )
National Center for Nanoscience and TechnologyBeijing100190China
Cardiology DivisionBeijing Hospital of the Ministry of HealthBeijing100730China

Abstract

The biodistribution of gold nanoparticles (AuNPs) is closely related to toxicological effects and is of great concern because of their potential application in diverse biomedical areas. However, with the discovery of novel anatomic and histological structures for fluid transport, the underlying mechanisms involved in the in vivo transport and biodistribution of AuNPs require further in-depth investigations. In the current study, we investigated the biodistribution of 10-nm AuNPs in rats after intervaginal space injection (ISI) in the tarsal tunnel, where a focal point of tendons, vessels, and nerve fibers may optimally connect to other remote connective tissues. The intravenous injection (IVI) of AuNPs served as a control. The blood and organs were collected at 5, 15, and 30 min and at 1, 4, 12, and 24 h after injection for quantitative analysis of Au distribution with inductively coupled plasma mass spectrometry (ICP-MS). IVI and ISI yielded significantly different results: The AuNP content in the blood after ISI was much lower than that after IVI; was similar in the lungs, heart, and intestines; and was higher in the skin and muscle. These findings were supported by the ratios of AuNP content and relative organ AuNP distribution proportions. Our results demonstrated a fast, direct, and the circulation-independent AuNP–organ transport pathway, which may improve our understanding of physiological and pathological biodistribution processes in biological systems. Furthermore, these results provide novel insights into the in vivo transport and biodistribution of AuNPs, which may lead to novel and efficient therapeutic and administration strategies.

Keywords: gold nanospheres, hierarchical multiphase porous medium, intervaginal space injection, in vivo transport, inductively coupled plasma mass spectrometry (ICP-MS)

References(39)

1

Mahmoudi, M. ; Sant, S. ; Wang, B. ; Laurent, S. ; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 24-46.

2

Liu, Y. ; Chen, C. Y. ; Qian, P. X. ; Lu, X. F. ; Sun, B. Y. ; Zhang, X. ; Wang, L. M. ; Gao, X. F. ; Li, H. ; Chen, Z. Y. et al. Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nat. Commun. 2015, 6, 5988.

3

Xiao, X. L. ; Lu, J. ; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733-737.

4

Cobley, C. M. ; Chen, J. Y. ; Cho, E. C. ; Wang, L. V. ; Xia, Y. N. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40, 44-56.

5

Wang, P. P. ; Yu, Q. Y. ; Long, Y. ; Hu, S. ; Zhuang, J. ; Wang, X. Multivalent assembly of ultrasmall nanoparticles: One-, two-, and three-dimensional architectures of 2 nm gold nanoparticles. Nano Res. 2012, 5, 283-291.

6

Dreaden, E. C. ; Mackey, M. A. ; Huang, X. H. ; Kang, B. ; El-Sayed, M. A. Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 2011, 40, 3391-3404.

7

Dobrovolskaia, M. A. ; McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2007, 2, 469-478.

8

Chen, P. C. ; Mwakwari, S. C. ; Oyelere, A. K. Gold nanoparticles: From nano medicine to nanosensing. Nanotechnol. Sci. Appl. 2008, 1, 45-65.

9

Khlebtsov, N. ; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647-1671.

10

Yah, C. S. ; Simate, G. S. ; Iyuke, S. E. Nanoparticles toxicity and their routes of exposures. Pak. J. Pharm. Sci. 2012, 25, 477-491.

11

Yah, C. S. The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed. Res. 2013, 24, 400-413.

12

De Jong, W. H. ; Hagens, W. I. ; Krystek, P. ; Burger, M. C. ; Sips, A. J. A. M. ; Geertsma, R. E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008, 29, 1912-1919.

13

Zhang, X. D. ; Wu, H. Y. ; Wu, D. ; Wang, Y. Y. ; Chang, J. H. ; Zhai, Z. B. ; Meng, A. M. ; Liu, P. X. ; Zhang, L. A. ; Fan, F. Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine 2010, 5, 771-781.

14

Wang, L. M. ; Li, Y. F. ; Zhou, L. J. ; Liu, Y. ; Meng, L. ; Zhang, K. ; Wu, X. C. ; Zhang, L. L. ; Li, B. ; Chen, C. Y. Characterization of gold nanorods in vivo by integrated analytical techniques: Their uptake, retention, and chemical forms. Anal. Bioanal. Chem. 2010, 396, 1105-1114.

15

Hillyer, J. F. ; Albrecht, R. M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 2001, 90, 1927-36.

16

Sharifi, S. ; Behzadi, S. ; Laurent, S. ; Forrest, M. L. ; Stroeve, P. ; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323-2343.

17

Li, H. Y. ; Chen, M. ; Yang, J. F. ; Yang, C. Q. ; Xu, L. ; Wang, F. ; Tong, J. B. ; Lv, Y. ; Suonan, C. Fluid flow along venous adventitia in rabbits: Is it a potential drainage system complementary to vascular circulations? PLoS One 2012, 7, e41395.

18

Li, H. Y. ; Tong, J. B. ; Cao, W. G. ; Chen, M. ; Li, H. ; Dai, H. ; Xu, L. ; Chen, X. L. Longitudinal non-vascular transport pathways originating from acupuncture points in extremities visualised in human body. Chin. Sci. Bull. 2014, 59, 5090-5095.

19

Feng, J. T. ; Wang, F. ; Han, X. X. ; Ao, Z. ; Sun, Q. M. ; Hua, W. D. ; Chen, P. P. ; Jing, T. W. ; Li, H. Y. ; Han, D. A "green pathway" different from simple diffusion in soft matter: Fast molecular transport within micro/nanoscale multiphase porous systems. Nano Res. 2014, 7, 434-442.

20

Ma, Y. Y. ; Li, W. Y. ; Cho, E. C. ; Li, Z. Y. ; Yu, T. ; Zeng, J. ; Xie, Z. X. ; Xia, Y. N. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 2010, 4, 6725-6734.

21

Drake, R. L. ; Vogl, W. ; Mitchell, A. W. M. Gray's Anatomy for Students; Elsevier: Philadelphia, 2005.

22

Boisselier, E. ; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759-1782.

23

Jiang, Y. Y. ; Deng, Z. J. ; Yang, D. ; Deng, X. ; Li, Q. ; Sha, Y. L. ; Li, C. H. ; Xu, D. S. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Res. 2015, 8, 2152-2161.

24

Howes, P. D. ; Chandrawati, R. ; Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, 1247390.

25

Ng, V. W. K. ; Berti, R. ; Lesage, F. ; Kakkar, A. Gold: A versatile tool for in vivo imaging. J. Mater. Chem. B 2013, 1, 9-25.

26

Schleh, C. ; Semmler-Behnke, M. ; Lipka, J. ; Wenk, A. ; Hirn, S. ; Schäffler, M. ; Schmid, G. ; Simon, U. ; Kreyling, W. G. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 2012, 6, 36-46.

27

Hagens, W. I. ; Oomen, A. G. ; de Jong, W. H. ; Cassee, F. R. ; Sips, A. J. A. M. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol. 2007, 49, 217-229.

28

Koo, H. ; Huh, M. S. ; Sun, I. C. ; Yuk, S. H. ; Choi, K. ; Kim, K. ; Kwon, I. C. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res. 2011, 44, 1018-1028.

29

Park, K. ; Lee, S. ; Kang, E. ; Kim, K. ; Choi, K. ; Kwon, I. C. New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv. Funct. Mater. 2009, 19, 1553-1566.

30

Semmler-Behnke, M. ; Kreyling, W. G. ; Lipka, J. ; Fertsch, S. ; Wenk, A. ; Takenaka, S. ; Schmid, G. ; Brandau, W. Biodistribution of 1.4- and 18-nm gold particles in rats. Small 2008, 4, 2108-2111.

31

Balasubramanian, S. K. ; Jittiwat, J. ; Manikandan, J. ; Ong, C. N. ; Yu, L. E. ; Ong, W. Y. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 2010, 31, 2034-2042.

32

Choi, C. H. J. ; Alabi, C. A. ; Webster, P. ; Davis, M. E. Mechanism of active targeting in solid tumors with transferrin- containing gold nanoparticles. Proc. Natl. Acad. Sci. USA 2010, 107, 1235-1240.

33

Elder, A. ; Gelein, R. ; Silva, V. ; Feikert, T. ; Opanashuk, L. ; Carter, J. ; Potter, R. ; Maynard, A. ; Ito, Y. ; Finkelstein, J. et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 2006, 114, 1172-1178.

34

Matsui, Y. ; Sakai, N. ; Tsuda, A. ; Terada, Y. ; Takaoka, M. ; Fujimaki, H. ; Uchiyama, I. Tracking the pathway of diesel exhaust particles from the nose to the brain by X-ray florescence analysis. Spectrochim. Acta B 2009, 64, 796-801.

35

Iliff, J. J. ; Wang, M. ; Liao, Y. ; Plogg, B. A. ; Peng, W. ; Gundersen, G. A. ; Benveniste, H. ; Vates, G. E. ; Deane, R. ; Goldman, S. A. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111.

36

Thrane, V. R. ; Thrane, A. S. ; Plog, B. A. ; Thiyagarajan, M. ; Iliff, J. J. ; Deane, R. ; Nagelhus, E. A. ; Nedergaard, M. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci. Rep. 2013, 3, 2582.

37

Carare, R. O. ; Bernardes-Silva, M. ; Newman, T. A. ; Page, A. M. ; Nicoll, J. A. R. ; Perry, V. H. ; Weller, R. O. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: Significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 2008, 34, 131-144.

38

Louveau, A. ; Smirnov, I. ; Keyes, T. J. ; Eccles, J. D. ; Rouhani, S. J. ; Peske, J. D. ; Derecki, N. C. ; Castle, D. ; Mandell, J. W. ; Lee, K. S. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523, 337-341.

39

Langevin, H. M. Connective tissue: A body-wide signaling network? Med. Hypotheses 2006, 66, 1074-1077.

File
nr-9-7-2097_ESM.pdf (440.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 September 2015
Revised: 10 April 2016
Accepted: 14 April 2016
Published: 20 May 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2015CB5545507 and 2013CB933700) and the National Natural Science Foundation of China (No. 21305024).

Return