Journal Home > Volume 9 , Issue 7

Herein, we report a bottom-up solvothermal route to synthesize a flexible, highly efficient MoS2@SWNT electrocatalyst for hydrogen evolution reactions (HER). Characterization revealed that branch-like MoS2 nanosheets containing sulfurrich sites were in situ uniformly dispersed on free-standing single-walled carbon nanotube (SWNT) film, which could expose more unsaturated sulfur atoms, allowing excellent electrical contact with active sites. The flexible catalyst exhibited excellent HER performance with a low overpotential (~150 mV at 10 mA/cm2) and small Tafel slope (41 mV/dec). To further explain the improved performance, the local electronic structure was investigated by X-ray absorption near-edge structure (XANES) analysis, proving the presence of unsaturated sulfur atoms and strong electronic coupling between MoS2 and SWNT. This study provides an in-situ synthetic route to create new multifunctional flexible hybridized catalysts and useful insights into the relationships among the catalyst microstructure, electronic structure, and properties.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application

Show Author's information Daobin Liu1Weiyu Xu1Qin Liu1Qun He1Yasir A. Haleem1Changda Wang1Ting Xiang1Chongwen Zou1Wangsheng Chu1Jun Zhong2Zhiqiang Niu2Li Song1,3( )
National Synchrotron Radiation LaboratoryCAS Hefei Science CenterUniversity of Science and Technology of ChinaHefei230029China
Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials Laboratory (FUNSOM)Soochow UniversitySuzhou215123China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryCollaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjin300071China

Abstract

Herein, we report a bottom-up solvothermal route to synthesize a flexible, highly efficient MoS2@SWNT electrocatalyst for hydrogen evolution reactions (HER). Characterization revealed that branch-like MoS2 nanosheets containing sulfurrich sites were in situ uniformly dispersed on free-standing single-walled carbon nanotube (SWNT) film, which could expose more unsaturated sulfur atoms, allowing excellent electrical contact with active sites. The flexible catalyst exhibited excellent HER performance with a low overpotential (~150 mV at 10 mA/cm2) and small Tafel slope (41 mV/dec). To further explain the improved performance, the local electronic structure was investigated by X-ray absorption near-edge structure (XANES) analysis, proving the presence of unsaturated sulfur atoms and strong electronic coupling between MoS2 and SWNT. This study provides an in-situ synthetic route to create new multifunctional flexible hybridized catalysts and useful insights into the relationships among the catalyst microstructure, electronic structure, and properties.

Keywords: flexible, MoS2 , hydrogen evolution, unsaturated-sulfur-rich, X-ray absorption near-edge structure

References(37)

1

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

2

Mavrikakis, M. Computational methods: A search engine for catalysts. Nat. Mater. 2006, 5, 847–848.

3

Mallouk, T. E. Water electrolysis: Divide and conquer. Nat. Chem. 2013, 5, 362–363.

4

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

5

Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 2015, 9, 931–940.

6

Norskov, J. K.; Christensen, C. H. Toward efficient hydrogen production at surfaces. Science 2006, 312, 1322–1323.

7

Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

8

Laursen, A. B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5, 5577–5591.

9

Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317.

10

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

11

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

12

Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J. X.; Dravid, V. P. Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 2013, 135, 4584–4587.

13

Chung, D. Y.; Park, S. K.; Chung, Y. H.; Yu, S. H.; Lim, D. H.; Jung, N.; Ham, H. C.; Park, H. Y.; Piao, Y. Z.; Yoo, S. J. et al. Edge-exposed MoS2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale 2014, 6, 2131–2136.

14

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

15

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

16

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

17

Yan, Y.; Xia, B. Y.; Ge, X. M.; Liu, Z. L.; Wang, J. Y.; Wang, X. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 2013, 5, 12794–12798.

18

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

19

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

20

Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Abild- Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.

21

Youn, D. H.; Jang, J. W.; Kim, J. Y.; Jang, J. S.; Choi, S. H.; Lee, J. S. Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing. Sci. Rep. 2014, 4, 5492.

22

Zhao, X.; Zhu, H.; Yang, X. R. Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale 2014, 6, 10680–10685.

23

Liao, L.; Zhu, J.; Bian, X. J.; Zhu, L.; Scanlon, M. D.; Girault, H. H.; Liu, B. H. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326–5333.

24

Seo, B.; Jung, G. Y.; Sa, Y. J.; Jeong, H. Y.; Cheon, J. Y.; Lee, J. H.; Kim, H. Y.; Kim, J. C.; Shin, H. S.; Kwak, S. K. et al. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano 2015, 9, 3728–3739.

25

Ye, T. -N.; Lv, L. -B.; Xu, M.; Zhang, B.; Wang, K. -X.; Su, J.; Li, X. -H.; Chen, J. -S. Hierarchical carbon nanopapers coupled with ultrathin MoS2 nanosheets: Highly efficient large-area electrodes for hydrogen evolution. Nano Energy 2015, 15, 335–342.

26

Khan, M.; Yousaf, A. B.; Chen, M. M.; Wei, C. S.; Wu, X. B.; Huang, N. D.; Qi, Z. M.; Li, L. B. Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res. 2016, 9, 837–848.

27

Song, L.; Ci, L.; Lv, L.; Zhou, Z.; Yan, X.; Liu, D.; Yuan, H.; Gao, Y.; Wang, J.; Liu, L. et al. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater. 2004, 16, 1529–1534.

28

Markovic, Z.; Kepic, D.; Antunovic, I. H.; Nikolic, M.; Dramicanin, M.; Cincovic, M. M.; Markovic, B. T. Raman study of single wall carbon nanotube thin films treated by laser irradiation and dynamic and isothermal oxidation. J. Raman Spectrosc. 2012, 43, 1413–1422.

29

Shi, Y. M.; Wang, Y.; Wong, J. I.; Tan, A. Y. S.; Hsu, C. L.; Li, L. J.; Lu, Y. C.; Yang, H. Y. Self-assembly of hierarchical MoSx/CNT nanocomposites (2 < x < 3): Towards high performance anode materials for lithium ion batteries. Sci. Rep. 2013, 3, 2169.

DOI
30

Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

31

Vrubel, H.; Merki, D.; Hu, X. L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136–6144.

32

Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on grapheneprotected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

33

Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core–shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.

34

Sonntag, B.; Brown, F. C. Soft-X-ray response of transitionmetal layer compounds. Phys. Rev. B 1974, 10, 2300–2306.

35

Didziulis, S. V.; Lince, J. R.; Shuh, D. K.; Durbin, T. D.; Yarmoff, J. A. Photoelectron spectroscopy of MoS2 at the sulfur 2p absorption edge. J. Electron Spectrosc. Relat. Phenom. 1992, 60, 175–192.

36

Zhang, L.; Ji, L. W.; Glans, P. A.; Zhang, Y. G.; Zhu, J. F.; Guo, J. H. Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells. Phys. Chem. Chem. Phys. 2012, 14, 13670–13675.

37

Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/ sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.

File
nr-9-7-2079_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 February 2016
Revised: 06 April 2016
Accepted: 08 April 2016
Published: 14 May 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

We acknowledge the financial support of the National Basic Research Program of China (No. 2014CB848900), the National Natural Science Foundation of China (Nos. U1232131, U1532112, 11375198, and 11574280), the Fundamental Research Funds for the Central Universities (No. WK2310000053), User with Potential from CAS Hefei Science Center (No. 2015HSC-UP020) and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University. L. S. thanks the recruitment program of global experts, the CAS Hundred Talent Program. We also thank the Shanghai synchrotron Radiation Facility (14W1, SSRF), the Beijing Synchrotron Radiation Facility (1W1B and soft-X-ray endstation, BSRF) and the Hefei Synchrotron Radiation Facility (MCD and Photoemission Endstations, NSRL) for help in characterizations.

Return