Journal Home > Volume 9 , Issue 7

Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole (F-PVDF/Fe3O4@PPyx ) fibers with core–sheath structure were successfully fabricated by electrospinning of a PVDF/Fe3O4 mixture and in situ chemical oxidative polymerization of pyrrole, followed by chemical vapor deposition with fluoroalkyl silane. The F-PVDF/Fe3O4@PPy0.075 fiber film produces a superhydrophobic surface with self-healing behavior, which can repetitively and automatically restore superhydrophobicity when the surface is chemically damaged. Moreover, the maximum reflection loss (RL) of the F-PVDF/Fe3O4@PPy0.075 fiber film reaches -21.5 dB at 16.8 GHz and the RL below -10 dB is in the frequency range of 10.6–16.5 GHz with a thickness of 2.5 mm. The microwave absorption performance is attributed to the synergetic effect between dielectric loss and magnetic loss originating from PPy, PVDF and Fe3O4. As a consequence, preparing such F-PVDF/Fe3O4@PPyx fibers in this manner provides a simple and effective route to develop multi-functional microwave absorbing materials for practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption

Show Author's information Yunan Li1Yong Zhao1Xianyong Lu1( )Ying Zhu1( )Lei Jiang1,2
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of Chemistry and EnvironmentBeihang UniversityBeijing100191China
Laboratory of Bio-inspired Smart Interfacial ScienceTechnology Institute of Physics and ChemistryChinese Academy of ScienceBeijing100190China

Abstract

Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole (F-PVDF/Fe3O4@PPyx ) fibers with core–sheath structure were successfully fabricated by electrospinning of a PVDF/Fe3O4 mixture and in situ chemical oxidative polymerization of pyrrole, followed by chemical vapor deposition with fluoroalkyl silane. The F-PVDF/Fe3O4@PPy0.075 fiber film produces a superhydrophobic surface with self-healing behavior, which can repetitively and automatically restore superhydrophobicity when the surface is chemically damaged. Moreover, the maximum reflection loss (RL) of the F-PVDF/Fe3O4@PPy0.075 fiber film reaches -21.5 dB at 16.8 GHz and the RL below -10 dB is in the frequency range of 10.6–16.5 GHz with a thickness of 2.5 mm. The microwave absorption performance is attributed to the synergetic effect between dielectric loss and magnetic loss originating from PPy, PVDF and Fe3O4. As a consequence, preparing such F-PVDF/Fe3O4@PPyx fibers in this manner provides a simple and effective route to develop multi-functional microwave absorbing materials for practical applications.

Keywords: microwave absorption, self-healing, superhydrophobicity, core–sheath structure

References(33)

1

Chen, D. Z.; Wang, G. S.; He, S.; Liu, J.; Guo, L.; Cao, M. S. Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. J. Mater. Chem. A 2013, 1, 5996–6003.

2

Liu, X. F.; Chen, Y. X.; Cui, X. R.; Zeng, M.; Yu, R. H.; Wang, G. S. Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 2015, 3, 12197–12204.

3

Liu, J. W.; Xu, J. J.; Che, R. C.; Chen, H. J.; Liu, M. M.; Liu, Z. W. Hierarchical Fe3O4@TiO2 yolk–shell microspheres with enhanced microwave-absorption properties. Chem. —Eur. J. 2013, 19, 6746–6752.

4

Wang, L.; Jia, X. L.; Li, Y. F.; Yang, F.; Zhang, L. Q.; Liu, L. P.; Ren, X.; Yang, H. T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. J. Mater. Chem. A 2014, 2, 14940–14946.

5

Lu, X. Y.; Wu, Y. Z.; Cai, H. Y.; Qu, X. Y.; Ni, L. M.; Teng, C.; Zhu, Y.; Jiang, L. Fe3O4 nanopearl decorated carbon nanotubes stemming from carbon onions with self-cleaning and microwave absorption properties. RSC Adv. 2015, 5, 54175–54181.

6

Li, Y. B.; Chen, G.; Li, Q. H.; Qiu, G. Z.; Liu, X. H. Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. J. Alloy. Compd. 2011, 509, 4104–4107.

7

Oyharçabal, M.; Olinga, T.; Foulc, M. -P.; Lacomme, S.; Gontier, E.; Vigneras, V. Influence of the morphology of polyaniline on the microwave absorption properties of epoxy polyaniline composites. Compos. Sci. Technol. 2013, 74, 107–112.

8

Sun, Y. P.; Xiao, F.; Liu, X. G.; Feng, C.; Jin, C. G. Preparation and electromagnetic wave absorption properties of core–shell structured Fe3O4–polyaniline nanoparticles. RSC Adv. 2013, 3, 22554–22559.

9

Zhou, W. C.; Hu, X. J.; Bai, X. X.; Zhou, S. Y.; Sun, C. H.; Yan, J.; Chen, P. Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-poly(3, 4- ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interfaces 2011, 3, 3839–3845.

10

Xiang, J.; Li, J. L.; Zhang, X. H.; Ye, Q.; Xu, J. H.; Shen, X. Q. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and highperformance electromagnetic wave absorbers. J. Mater. Chem. A 2014, 2, 16905–16914.

11

Chen, Y. -H.; Huang, Z. -H.; Lu, M. -M.; Cao, W. -Q.; Yuan, J.; Zhang, D. -Q.; Cao, M. -S. 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. J. Mater. Chem. A 2015, 3, 12621–12625.

12

Cui, C. K.; Du, Y. C.; Li, T. H.; Zheng, X. Y.; Wang, X. H.; Han, X. J.; Xu, P. Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. J. Phys. Chem. B 2012, 116, 9523–9531.

13

Liu, T.; Pang, Y.; Zhu, M.; Kobayashi, S. Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 2014, 6, 2447–2454.

14

Jiang, L.; Zhao, Y.; Zhai, J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. 2004, 116, 4438–4441.

15

Manna, U.; Lynn, D. M. Restoration of superhydrophobicity in crushed polymer films by treatment with water: Self-healing and recovery of damaged topographic features aided by an unlikely source. Adv. Mater. 2013, 25, 5104–5108.

16

Li, Y.; Li, L.; Sun, J. Q. Bioinspired self-healing superhydrophobic coatings. Angew. Chem., Int. Ed. 2010, 49, 6129–6133.

17

Zhou, H.; Wang, H. X.; Niu, H. T.; Gestos, A.; Lin, T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv. Func. Mater. 2013, 23, 1664–1670.

18

Lu, X. Y.; Niu, M.; Qiao, R. R.; Gao, M. Y. Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a "one-pot" reaction. J. Phys. Chem. B 2008, 112, 14390–14393.

19

Maity, D.; Kale, S. N.; Kaul-Ghanekar, R.; Xue, J. M.; Ding, J. Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (Ⅲ) acetylacetonate in tri(ethylene glycol). J. Magn. Magn. Mater. 2009, 321, 3093–3098.

20

Lu, G. W.; Li, C.; Shi, G. Q. Polypyrrole micro- and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid. Polymer 2006, 47, 1778–1784.

21

Zhang, X. J.; Wang, G. S.; Cao, W. Q.; Wei, Y. Z.; Liang, J. F.; Guo, L.; Cao, M. S. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 2014, 6, 7471–7478.

22

Liu, T.; Zhou, P. H.; Xie, J. L.; Deng, L. J. The hierarchical architecture effect on the microwave absorption properties of cobalt composites. J. Appl. Phys. 2011, 110, 033918.

23

Meng, X. M.; Zhang, X. J.; Lu, C.; Pan, Y. F.; Wang, G. S. Enhanced absorbing properties of three-phase composites based on a thermoplastic-ceramic matrix (BaTiO3 + PVDF) and carbon black nanoparticles. J. Mater. Chem. A 2014, 2, 18725–18730.

24

Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

25

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

26

Liu, X. F.; Cui, X. R.; Chen, Y. X.; Zhang, X. -J.; Yu, R. H.; Wang, G. -S.; Ma, H. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles–poly(vinylidene fluoride) composites. Carbon 2015, 95, 870–878.

27

Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949–6956.

28

Wang, L.; Huang, Y.; Sun, X.; Huang, H. J.; Liu, P. B.; Zong, M.; Wang, Y. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014, 6, 3157–3164.

29

Wang, H.; Dai, Y. Y.; Geng, D. Y.; Ma, S.; Li, D.; An, J.; He, J.; Liu, W.; Zhang, Z. D. CoxNi100 x nanoparticles encapsulated by curved graphite layers: Controlled in situ metal-catalytic preparation and broadband microwave absorption. Nanoscale 2015, 7, 17312–17319.

30

Zhou, W. C.; Hu, X. J.; Sun, C. H.; Yan, J.; Zhou, S. Y.; Chen, P. Microwave absorbing properties of Fe3O4-poly(3, 4- ethylenedioxythiophene) hybrids in low-frequency band. Polym. Advan. Technol. 2014, 25, 83–88.

31

Chen, S. S.; Li, X.; Li, Y.; Sun, J. Q. Intumescent flameretardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 2015, 9, 4070–4076.

32

Su, F. H.; Yao, K. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method. ACS Appl. Mater. Interfaces 2014, 6, 8762–8770.

33

Xu, W. J.; Song, J. L.; Sun, J.; Lu, Y.; Yu, Z. Y. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS Appl. Mater. Interfaces 2011, 3, 4404–4414.

File
nr-9-7-2034_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 February 2016
Revised: 22 March 2016
Accepted: 06 April 2016
Published: 06 May 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 51273008, 51473008, and 21103006), Beijing Natural Science Foundation (No. 2132030) and the National Basic Research Program of China (No. 2012CB933200).

Return