Journal Home > Volume 9 , Issue 7

We report the preparation of nanocomposites of reduced graphene oxide with embedded Fe3O4/Fe nanorings (FeNR@rGO) by chemical hydrothermal growth. We illustrate the use of these nanocomposites as novel electromagnetic wave absorbing materials. The electromagnetic wave absorption properties of the nanocomposites with different compositions were investigated. The preparation procedure and nanocomposite composition were optimized to achieve the best electromagnetic wave absorption properties. Nanocomposites with a GO: α-Fe2O3 mass ratio of 1:1 prepared by annealing in H2/Ar for 3 h exhibited the best properties. This nanocomposite sample (thickness = 4.0 mm) showed a minimum reflectivity of–23.09 dB at 9.16 GHz. The band range was 7.4–11.3 GHz when the reflectivity was less than–10 dB and the spectrum width was up to 3.9 GHz. These figures of merit are typically of the same order of magnitude when compared to the values shown by traditional ferric oxide materials. However, FeNR@rGO can be readily applied as a microwave absorbing material because the production method we propose is highly compatible with mass production standards.


menu
Abstract
Full text
Outline
About this article

Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings

Show Author's information Yi Ding1Long Zhang1Qingliang Liao1( )Guangjie Zhang1Shuo Liu1Yue Zhang1,2( )
State Key Laboratory for Advanced Metals and MaterialsSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
Beijing Municipal Key Laboratory of New Energy Materials and TechnologiesUniversity of Science and Technology BeijingBeijing100083China

Abstract

We report the preparation of nanocomposites of reduced graphene oxide with embedded Fe3O4/Fe nanorings (FeNR@rGO) by chemical hydrothermal growth. We illustrate the use of these nanocomposites as novel electromagnetic wave absorbing materials. The electromagnetic wave absorption properties of the nanocomposites with different compositions were investigated. The preparation procedure and nanocomposite composition were optimized to achieve the best electromagnetic wave absorption properties. Nanocomposites with a GO: α-Fe2O3 mass ratio of 1:1 prepared by annealing in H2/Ar for 3 h exhibited the best properties. This nanocomposite sample (thickness = 4.0 mm) showed a minimum reflectivity of–23.09 dB at 9.16 GHz. The band range was 7.4–11.3 GHz when the reflectivity was less than–10 dB and the spectrum width was up to 3.9 GHz. These figures of merit are typically of the same order of magnitude when compared to the values shown by traditional ferric oxide materials. However, FeNR@rGO can be readily applied as a microwave absorbing material because the production method we propose is highly compatible with mass production standards.

Keywords: X-ray diffraction, Raman spectrum, hydrothermal method, reduced graphene oxide, Fe3O4/Fe nanorings

References(34)

1

Sun, D. P.; Zou, Q.; Qian, G. Q.; Sun, C.; Jiang, W.; Li, F. S. Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties. Acta Mater. 2013, 61, 5829–5834.

2

Qin, F. X.; Peng, H. -X. Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 2013, 58, 183–259.

3

Ni, Q. Q.; Zhu, Y. F.; Yu, L. J.; Fu, Y. Q. One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application. Nanoscale Res. Lett. 2015, 10, 174.

4

Chang, W. -C.; Chen, H. -S.; Yu, W. -C. Flower-shaped ZnO nanocrystallite aggregates synthesized through a templatefree aqueous solution method for dye-sensitized solar cells. Appl. Phys. Lett. 2015, 106, 013908.

5

Xie, S.; Guo, X. N.; Jin, G. Q.; Guo, X. Y. Carbon coated Co-SiC nanocomposite with high-performance microwave absorption. Phys. Chem. Chem. Phys. 2013, 15, 16104–16110.

6

Liu, P. B.; Huang, Y.; Sun, X. Excellent electromagnetic absorption properties of poly(3, 4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method. ACS Appl. Mater. Interfaces 2013, 5, 12355–12360.

7

Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms. Appl. Phys. Lett. 2015, 107, 113107.

8

Das, S.; Chandra Nayak, G.; Sahu, S. K.; Oraon, R. Development of FeCoB/graphene oxide based microwave absorbing materials for X-band region. J. Magn. Magn. Mater. 2015, 384, 224–228.

9

Kang, Y.; Chu, Z. Y.; Zhang, D. J.; Li, G. Y.; Jiang, Z. H.; Cheng, H. F.; Li, X. D. Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 2013, 61, 200–208.

10

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Fabrication and enhanced microwave absorption properties of Al2O3 nanoflake-coated Ni core–shell composite microspheres. RSC Adv. 2014, 4, 57424–57429.

11

Zhang, L.; Zhang, X. H.; Zhang, G. J.; Zhang, Z.; Liu, S.; Li, P. F.; Liao, Q. L.; Zhao, Y. G.; Zhang, Y. Investigation on the optimization, design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites. RSC Adv. 2015, 5, 10197–10203.

12

Guo, Z.; Lee, S. E.; Kim, H.; Park, S.; Hahn, H. T.; Karki, A. B.; Young, D. P. Fabrication, characterization and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles. Acta Mater. 2009, 57, 267–277.

13

Wang, F. L.; Liu, J. R.; Kong, J.; Zhang, Z. J.; Wang, X. Z.; Itoh, M.; Machida, K. Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J. Mater. Chem. 2011, 21, 4314–4320.

14

Chiu, S. C.; Yu, H. C.; Li, Y. Y. High electromagnetic wave absorption performance of silicon carbide nanowires in the Gigahertz range. J. Phys. Chem. C 2010, 114, 1947–1952.

15

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

16

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

17

Wang, C.; Han, X. J.; Xu, P.; Zhang, X. L.; Du, Y. C.; Hu, S. R.; Wang, J. Y.; Wang, X. H. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 2011, 98, 072906.

18

Yan, D. -X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P. -G.; Wang, J. -H.; Li, Z. -M. Structured reduced graphene oxide/ polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566.

19

Shen, B.; Zhai, W. T.; Tao, M. M.; Ling, J. Q.; Zheng, W. G. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391.

20

Liu, Q. C.; Zi, Z. F.; Zhang, M.; Pang, A. B.; Dai, J. M.; Sun, Y. P. Enhanced microwave absorption properties of carbonyl iron/Fe3O4 composites synthesized by a simple hydrothermal method. J. Alloy. Compd 2013, 561, 65–70.

21

Wang, T. S.; Liu, Z. H.; Lu, M. M.; Wen, B.; Ouyang, Q. Y.; Chen, Y. J.; Zhu, C. L.; Gao, P.; Li, C. Y.; Cao, M. S. et al. Graphene–Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties. J. Appl. Phys. 2013, 113, 024314.

22

Ren, Y. L.; Zhu, C. L.; Zhang, S.; Li, C. Y.; Chen, Y. J.; Gao, P.; Yang, P. P.; Ouyang, Q. Y. Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: Synthesis and electromagnetic absorption properties. Nanoscale 2013, 5, 12296–12303.

23

Wang, L.; Huang, Y.; Sun, X.; Huang, H. J.; Liu, P. B.; Zong, M.; Wang, Y. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014, 6, 3157–3164.

24

Wang, L.; Huang, Y.; Ding, X.; Liu, P. B.; Zong, M.; Sun, X.; Wang, Y.; Zhao, Y. Supraparamagnetic quaternary nanocomposites of graphene@Fe3O4@SiO2@SnO2: Synthesis and enhanced electromagnetic absorption properties. Mater. Lett. 2013, 109, 146–150.

25

Jia, C. J.; Sun, L. D.; Luo, F.; Han, X. D.; Heyderman, L. J.; Yan, Z. G.; Yan, C. H.; Zheng, K.; Zhang, Z.; Takano, M. et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 2008, 130, 16968–16977.

26

Zhang, H.; Xie, A. J.; Wang, C. P.; Wang, H. S.; Shen, Y. H.; Tian, X. Y. Novel rGO/α-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption. J. Mater. Chem. A 2013, 1, 8547–8552.

27

Wang, T. H.; Li, Y. F.; Wang, L.; Liu, C.; Geng, S.; Jia, X. L.; Yang, F.; Zhang, L. Q.; Liu, L. P.; You, B. et al. Synthesis of graphene/a-Fe2O3 composites with excellent electromagnetic wave absorption properties. RSC Adv. 2015, 5, 60114–60120.

28

Huo, Y.; Zhu, Y. G.; Xie, J.; Cao, G. S.; Zhu, T. J.; Zhao, X. B.; Zhang, S. C. Controllable synthesis of hollow α-Fe2O3 nanostructures, their growth mechanism, and the morphologyreserved conversion to magnetic Fe3O4/C nanocomposites. RSC Adv. 2013, 3, 19097–19103.

29

Tong, G. X.; Liu, Y.; Cui, T. T.; Li, Y.; Zhao, Y. T.; Guan, J. G. Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings. Appl. Phys. Lett. 2016, 108, 072905.

30

Wang, L. L.; Liang, J. W.; Zhu, Y. C.; Mei, T.; Zhang, X.; Yang, Q.; Qian, Y. T. Synthesis of Fe3O4@C core–shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Nanoscale 2013, 5, 3627–3631.

31

Guan, P. F.; Zhang, X. F.; Guo, J. J. Assembled Fe3O4 nanoparticles on graphene for enhanced electromagnetic wave losses. Appl. Phys. Lett. 2012, 101, 153108.

32

Wang, H. G.; Ma, D. L.; Huang, X. L.; Huang, Y.; Zhang, X. B. General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci. Rep. 2012, 2, 701.

33

Chen, Y. J.; Xiao, G.; Wang, T. S.; Ouyang, Q. Y.; Qi, L. H.; Ma, Y.; Gao, P.; Zhu, C. L.; Cao, M. S.; Jin, H. B. Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2011, 115, 13603–13608.

34

Chen, Y. -J.; Gao, P.; Wang, R. -X.; Zhu, C. -L.; Wang, L. -J.; Cao, M. -S.; Jin, H. -B. Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2009, 113, 10061–10064.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 January 2016
Revised: 29 March 2016
Accepted: 06 April 2016
Published: 05 May 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CB932602), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (No. 51527802, 51372020 and 51232001), Beijing Municipal Science & Technology Commission, Beijing Higher Education Young Elite Teacher Project (No. YETP0354), Program for New Century Excellent Talents in University (No. NCET- 12-0777).

Return