Journal Home > Volume 9 , Issue 7

Novel SnO2–x/g-C3N4 heterojunction nanocomposites composed of reduced SnO2–x nanoparticles and exfoliated g-C3N4 nanosheets were prepared by a convenient one-step pyrolysis method. The structural, morphological, and optical properties of the as-prepared nanocomposites were characterized in detail, indicating that the aggregation of g-C3N4 nanosheets was prevented by small, well-dispersed SnO2–x nanoparticles. The ultraviolet–visible spectroscopy absorption bands of the nanocomposites were shifted to a longer wavelength region than those exhibited by pure SnO2 or g-C3N4. The charge transfer and recombination processes occurring in the nanocomposites were investigated using linear scan voltammetry and electrochemical impedance spectroscopy. Under 30-W visible-light-emitting diode irradiation, the heterojunction containing 27.4 wt.% SnO2–x exhibited the highest photocurrent density of 0.0468 mA·cm–2, which is 33.43 and 5.64 times larger than that of pure SnO2 and g-C3N4, respectively. The photocatalytic activity of the heterojunction material was investigated by degrading rhodamine B under irradiation from the same light source. Kinetic study revealed a promising degradation rate constant of 0.0226 min-1 for the heterojunction containing 27.4 wt.% SnO2–x, which is 32.28 and 5.79 times higher than that of pure SnO2 and g-C3N4, respectively. The enhanced photoelectrochemical and photocatalytic performances of the nanocomposite may be due to its appropriate SnO2–x content and the compact structure of the junction between the SnO2–x nanoparticles and the g-C3N4 nanosheets, which inhibits the recombination of photogenerated electrons and holes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2–x/g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation

Show Author's information Kai Li1,§Xiaoqiao Zeng2,§Shanmin Gao1,3( )Lu Ma4Qingyao Wang1Hui Xu1Zeyan Wang3Baibiao Huang3Ying Dai3Jun Lu2( )
College of Chemistry and Materials ScienceLudong UniversityYantai264025China
Chemical Sciences and Engineering DivisionArgonne National LaboratoryArgonneIL60439USA
State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
X-Ray Science DivisionArgonne National LaboratoryArgonneIL60439USA

§ These authors contributed equally to this work.

Abstract

Novel SnO2–x/g-C3N4 heterojunction nanocomposites composed of reduced SnO2–x nanoparticles and exfoliated g-C3N4 nanosheets were prepared by a convenient one-step pyrolysis method. The structural, morphological, and optical properties of the as-prepared nanocomposites were characterized in detail, indicating that the aggregation of g-C3N4 nanosheets was prevented by small, well-dispersed SnO2–x nanoparticles. The ultraviolet–visible spectroscopy absorption bands of the nanocomposites were shifted to a longer wavelength region than those exhibited by pure SnO2 or g-C3N4. The charge transfer and recombination processes occurring in the nanocomposites were investigated using linear scan voltammetry and electrochemical impedance spectroscopy. Under 30-W visible-light-emitting diode irradiation, the heterojunction containing 27.4 wt.% SnO2–x exhibited the highest photocurrent density of 0.0468 mA·cm–2, which is 33.43 and 5.64 times larger than that of pure SnO2 and g-C3N4, respectively. The photocatalytic activity of the heterojunction material was investigated by degrading rhodamine B under irradiation from the same light source. Kinetic study revealed a promising degradation rate constant of 0.0226 min-1 for the heterojunction containing 27.4 wt.% SnO2–x, which is 32.28 and 5.79 times higher than that of pure SnO2 and g-C3N4, respectively. The enhanced photoelectrochemical and photocatalytic performances of the nanocomposite may be due to its appropriate SnO2–x content and the compact structure of the junction between the SnO2–x nanoparticles and the g-C3N4 nanosheets, which inhibits the recombination of photogenerated electrons and holes.

Keywords: g-C3N4, photoelectrochemical, reduced SnO2–x, heterojunctions, light-emitting diode light source

References(52)

1

Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.

2

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76−80.

3

Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397–10401.

4

Ohno, T.; Murakami, N.; Koyanagi, T.; Yang, Y. Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J. CO2 Utilization 2014, 6, 17–25.

5

Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465.

6

Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

7

Sridharan, K.; Jang, E.; Park, T. J. Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: Synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B: Environ. 2013, 142–143, 718–728.

8

Liu, W.; Wang, M. L.; Xu, C. X.; Chen, S. F. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem. Eng. J. 2012, 209, 386–393.

9

Yan, S. C.; Lv, S. B.; Li, Z. S.; Zou, Z. G. Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans. 2010, 39, 1488–1491.

10

Zang, Y. P.; Li, L. P.; Li, X. G.; Lin, R.; Li, G. S. Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J. 2014, 246, 277–286.

11

Belhadi, A.; Boumaza, S.; Trari, M. Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system. Appl. Energy 2011, 88, 4490–4495.

12

Huang, H.; Gong, H.; Chow, C. L.; Guo, J.; White, T. J.; Tse, M. S.; Tan, O. K. Low-temperature growth of SnO2 nanorod arrays and tunable n–p–n sensing response of a ZnO/SnO2 heterojunction for exclusive hydrogen sensors. Adv. Funct. Mater. 2011, 21, 2680–2686.

13

Wang, Y. J.; Tian, J. J.; Fei, C. B.; Lv, L. L.; Liu, X. G.; Zhao, Z. X.; Cao, G. Z. Microwave-assisted synthesis of SnO2 nanosheets photoanodes for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 25931–25938.

14

Uddin, M. T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Servant, L.; Muller, M. M.; Kleebe, H. J.; Ziegler, J.; Jaegermann, W. Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 2012, 51, 7764–7773.

15

Yin, R.; Luo, Q. Z.; Wang, D. S.; Sun, H. T.; Li, Y. Y.; Li, X. Y.; An, J. SnO2/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity. J. Mater. Sci. 2014, 49, 6067–6073.

16

Li, Q.; He, Y.; Peng, R. F. One-step synthesis of SnO2 nanoparticles-loaded graphitic carbon nitride and their application in thermal decomposition of ammonium perchlorate. New J. Chem. 2015, 39, 8703–8707.

17

Anise, A.; Aziz, H. Y. A simple large-scale method for preparation of g-C3N4/SnO2 nanocomposite as visiblelight-driven photocatalyst for degradation of an organic pollutant. Mater. Express 2015, 5, 309–318.

18

Chen, X.; Zhou, B. H.; Yang, S. L.; Wu, H. S.; Wu, Y. X.; Wu, L. D.; Pan, J.; Xiong, X. In situ construction of an SnO2/g-C3N4 heterojunction for enhanced visible-light photocatalytic activity. RSC Adv. 2015, 5, 68953–68963.

19

Chen, L. Y.; Zhang, W. D. A simple strategy for the preparation of g-C3N4/SnO2 nanocomposite photocatalysts. Sci. Adv. Mater. 2014, 6, 1091–1098.

20

Li, G. S.; Lian, Z. C.; Li, X.; Xu, Y. Y.; Wang, W. C.; Zhang, D. Q.; Tian, F. H.; Li, H. X. Ionothermal synthesis of black Ti3+-doped single-crystal TiO2 as an active photocatalyst for pollutant degradation and H2 generation. J. Mater. Chem. A 2015, 3, 3748–3756.

21

Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030.

22

Long, J. L.; Xue, W. W.; Xie, X. Q.; Gu, Q.; Zhou, Y. G.; Chi, Y. W.; Chen, W. K.; Ding, Z. X.; Wang, X. X. Sn2+ dopant induced visible-light activity of SnO2 nanoparticles for H2 production. Catal. Commun. 2011, 16, 215–219.

23

Fan, C. M.; Peng, Y.; Zhu, Q.; Lin, L.; Wang, R. X.; Xu, A. W. Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2-x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity. J. Phys. Chem. C 2013, 117, 24157–24166.

24

He, Y. M.; Zhang, L. H.; Fan, M. H.; Wang, X. X.; Walbridge, M. L.; Nong, Q. Y.; Wu, Y.; Zhao, L. H. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Solar Energy Mater. Solar Cells 2015, 137, 175–184.

25

He, Y. R.; Yan, F. F.; Yu, H. Q.; Yuan, S. J.; Tong, Z. H.; Sheng, G. P. Hydrogen production in a light-driven photoelectrochemical cell. Appl. Energy 2014, 113, 164–168.

26

Li, H.; Chen, J. Q.; Xia, Z. B.; Xing, J. H. Microwaveassisted preparation of self-doped TiO2 nanotube arrays for enhanced photoelectrochemical water splitting. J. Mater. Chem. A 2015, 3, 699–705.

27

Song, K. C.; Kang, Y. Preparation of high surface area tin oxide powders by a homogeneous precipitation method. Mater. Lett. 2000, 42, 283–289.

28

Wang, X. C.; Chen, X. F.; Thomas, A.; Fu, X. Z.; Antonietti, M. Metal-containing carbon nitride compounds: A new functional organic–metal hybrid material. Adv. Mater. 2009, 21, 1609–1612.

29

Cui, Y. J.; Zhang, J. S.; Zhang, G. G.; Huang, J. H.; Liu, P.; Antonietti, M.; Wang, X. C. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J. Mater. Chem. 2011, 21, 13032–13039.

30

Ghosh, M.; Pralong, V.; Wattiaux, A.; Sleight, A. W.; Subramanian, M. A. Tin (Ⅱ) doped anatase (TiO2) nanoparticles: A potential route to "greener" yellow pigments. Chem. —Asian J. 2009, 4, 881–885.

31

Sun, L. M.; Zhao, X.; Jia, C. J.; Zhou, Y. X.; Cheng, X. F.; Li, P.; Liu, L.; Fan, W. L. Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: Investigation based on experimental and theoretical studies. J. Mater. Chem. 2012, 22, 23428–23438.

32

Li, B. X.; Xie, Y.; Jing, M.; Rong, G. X.; Tang, Y. C.; Zhang, G. Z. In2O3 hollow microspheres: Synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir 2006, 22, 9380–9385.

33

Gan, J. Y.; Lu, X. H.; Wu, J. H.; Xie, S. L.; Zhai, T.; Yu, M. H.; Zhang, Z. S.; Mao, Y. C.; Wang, S. C. I.; Shen, Y. et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci. Rep. 2013, 3, 1021.

34

Zhao, Z.; Zhang, X. Y.; Zhang, G. Q.; Liu, Z. Y.; Qu, D.; Miao, X.; Feng, P. Y.; Sun, Z. C. Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res. 2015, 8, 4061–4071.

35

Li, T. T.; Zhao, L. H.; He, Y. M.; Cai, J.; Luo, M. F.; Lin, J. J. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B: Environ. 2013, 129, 255–263.

36

Li, K.; Gao, S. M.; Wang, Q. Y.; Xu, H.; Wang, Z. Y.; Huang, B. B.; Dai, Y.; Lu, J. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl. Mater. Interfaces 2015, 7, 9023–9030.

37

Wang, H. K.; Dou, K. P.; Teoh, W. Y.; Zhan, Y. W.; Hung, T. F.; Zhang, F. H.; Xu, J. Q.; Zhang, R. Q.; Rogach, A. L. Engineering of facets, band structure, and gas-sensing properties of hierarchical Sn2+-doped SnO2 nanostructures. Adv. Funct. Mater. 2013, 23, 4847–4853.

38

Li, N.; Du, K.; Liu, G.; Xie, Y. P.; Zhou, G. M.; Zhu, J.; Li, F.; Cheng, H. M. Effects of oxygen vacancies on the electrochemical performance of tin oxide. J. Mater. Chem. A 2013, 1, 1536–1539.

39

Han, Q.; Wang, B.; Zhao, Y.; Hu, C. G.; Qu, L. T. A graphitic-C3N4 "seaweed" architecture for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 11433–11437.

40

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

41

Li, X. F.; Zhang, J.; Shen, L. H.; Ma, Y. M.; Lei, W. W.; Cui, Q. L.; Zou, G. T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A 2009, 94, 387–392.

42

Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 2011, 115, 7355–7363.

43

Yu, J. G.; Wang, B. Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B: Environ. 2010, 94, 295–302.

44

Bai, X. J.; Wang, L.; Zong, R. L.; Lv, Y. H.; Sun, Y. Q.; Zhu, Y. F. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir 2013, 29, 3097–3105.

45

Hou, Y.; Wen, Z. H.; Cui, S. M.; Guo, X. R.; Chen, J. H. Constructing 2D porous graphitic C3N4 nanosheets/nitrogendoped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013, 25, 6291–6297.

46

Wei, Z.; Liu, Y. F.; Wang, J.; Zong, R. L.; Yao, W. Q.; Wang, J.; Zhu, Y. F. Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies. Nanoscale 2015, 7, 13943–13950.

47

Cheng, X. W.; Liu, H. L.; Chen, Q. H.; Li, J. J.; Wang, P. Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode. Electrochim. Acta 2013, 108, 203–210.

48

Zhang, J. Y.; Wang, Y. H.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. G. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/ g-C3N4 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317–10324.

49

Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal. B: Environ. 2014, 144, 885–892.

50

Bai, Y.; Wang, P. Q.; Liu, J. Y.; Liu, X. J. Enhanced photocatalytic performance of direct Z-scheme BiOCl–g-C3N4 photocatalysts. RSC Adv. 2014, 4, 19456–19461.

51

He, Y. M.; Zhang, L. H.; Wang, X. X.; Wu, Y.; Lin, H. J.; Zhao, L. H.; Weng, W. Z.; Wan, H. L.; Fan, M. H. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation. RSC Adv. 2014, 4, 13610–13619.

52

Li, Z. H.; Xie, Z. P.; Zhang, Y. F.; Wu, L.; Wang, X. X.; Fu, X. Z. Wide band gap p-block metal oxyhydroxide InOOH: A new durable photocatalyst for benzene degradation. J. Phys. Chem. C 2007, 111, 18348–18352.

File
nr-9-7-1969_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 November 2015
Revised: 21 March 2016
Accepted: 01 April 2016
Published: 29 April 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the Key Project of Natural Science Foundation of Shandong Province (No. ZR2013EMZ001), the Science and Technology Development Plan Project of Shandong Province (No. 2014GSF117015), the National Basic Research Program of China (No. 2013CB632401) and the National Natural Science Foundation of China (No. 51402145). This work was also supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE).

Return