Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing ~90 ppmg-1·h-1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.
Metz, B.; Davidson, O.; De Coninck, H.; Loos, M.; Meyer, L. Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005.
European Parliament Legislative Resolution of 17 December 2008 on the Proposal for a Directive of the European Parliament and the Council on the Promotion of the Use of Energy from Renewable Source (COM(2008)0019-C6-0046/ 2008-2008/0016(COD)); European parliament: Strasbourg, France, 2008.
Yuan, L.; Xu, Y. -J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 154–167.
Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278.
Liu, G. H.; Hoivik, N.; Wang, K. Y.; Jakobsen, H. Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol. Energy Mater. Sol. Cells 2012, 105, 53–68.
Wang, C. J.; Thompson, R. L.; Baltrus, J.; Matranga, C. Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. J. Phys. Chem. Lett. 2010, 1, 48–53.
Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217–9233.
Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.
Kwak, B. S.; Kang, M. Photocatalytic reduction of CO2 with H2O using perovskite Ca x Ti y O3. Appl. Surf. Sci. 2015, 337, 138–144.
Li, X.; Wen, J. Q.; Low, J. X.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.
Ashley, M.; Magiera, C.; Ramidi, P.; Blackburn, G.; Scott, T. G.; Gupta, R.; Wilson, K.; Ghosh, A.; Biswas, A. Nanomaterials and processes for carbon capture and conversion into useful by-products for a sustainable energy future. Greenh. Gases: Sci. Technol. 2012, 2, 419–444.
Kumar, S. G.; Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241.
Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 24, 16–42.
Yu, J. G.; Low, J. X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.
Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal. Today 1998, 45, 221–227.
Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J. Electroanal. Chem. 1995, 396, 21–26.
Pathak, P.; Meziani, M. J.; Li, Y.; Cureton, L. T.; Sun, Y. P. Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chem. Commun. 2004, 1234–1235.
Tseng, I. H.; Chang, W. -C.; Wu, J. C. S. Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal. B: Environ. 2002, 37, 37–48.
Lo, C. C.; Hung, C. H.; Yuan, C. S.; Wu, J. F. Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol. Energy Mater. Sol. Cells 2007, 91, 1765–1774.
Dey, G. R.; Belapurkar, A. D.; Kishore, K. Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water. J. Photochem. Photobiol. A: Chem. 2004, 163, 503–508.
Guan, G. Q.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A. Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Appl. Catal. A: Gen. 2003, 249, 11–18.
Guan, G. Q.; Kida, T.; Yoshida, A. Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl. Catal. B: Environ. 2003, 41, 387–396.
Yahaya, A. H.; Gondal, M. A.; Hameed, A. Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem. Phys. Lett. 2004, 400, 206–212.
Chen, H. -C.; Chou, H. -C.; Wu, J. C. S.; Lin, H. -Y. Sol–gel prepared InTaO4 and its photocatalytic characteristics. J. Mater. Res. 2008, 23, 1364–1370.
Ozcan, O.; Yukruk, F.; Akkaya, E. U.; Uner, D. Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation. Appl. Catal. B: Environ. 2007, 71, 291–297.
Ozcan, O.; Yukruk, F.; Akkaya, E. U.; Uner, D. Dye sensitized CO2 reduction over pure and platinized TiO2. Top. Catal. 2007, 44, 523–528.
Nguyen, T. -V.; Wu, J. C. S.; Chiou, C. -H. Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal. Commun. 2008, 9, 2073–2076.
Pathak, P.; Meziani, M. J.; Castillo, L.; Sun, Y. P. Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem. 2005, 7, 667–670.
Sasirekha, N.; Basha, S. J. S; Shanthi, K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl. Catal. B: Environ. 2006, 62, 169–180.
Zhao, Z. H.; Fan, J. M.; Wang, Z. Z. Photocatalytic CO2 reduction using sol–gel derived titania-supported zincphthalocyanine. J. Clean. Prod. 2007, 15, 1894–1897.
Sarkar, A.; Shchukarev, A.; Leino, A. -R.; Kordas, K.; Mikkola, J. -P.; Petrov, P. O.; Tuchina, E. S.; Popov, A. P.; Darvin, M. E.; Meinke, M. C. et al. Photocatalytic activity of TiO2 nanoparticles: Effect of thermal annealing under various gaseous atmospheres. Nanotechnology 2012, 23, 475711.
Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide Co-catalysts with a core–shell structure. Angew. Chem., Int. Ed. 2013, 52, 5776–5779.
Liu, Y.; Zhou, S.; Li, J. M.; Wang, Y. J.; Jiang, G. Y.; Zhao, Z.; Liu, B.; Gong, X. Q.; Duan, A. J.; Liu, J. et al. Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Appl. Catal. B: Environ. 2015, 168–169, 125–131.
Li, Q. Y.; Zong, L. L.; Li, C.; Yang, J. J. Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl. Surf. Sci. 2014, 314, 458–463.
Long, M. C.; Cai, W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.; Wu, Y. H. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 2006, 110, 20211–20216.
Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786.
Yang, C. Y.; Wang, W. D.; Shan, Z. C.; Huang, F. Q. Preparation and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst SnSx/TiO2. J. Solid State Chem. 2009, 182, 807–812.
Robel, I.; Kuno, M.; Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137.
Zhang, Q. -H.; Han, W. -D.; Hong, Y. -J.; Yu, J. -G. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today 2009, 148, 335–340.
Koci, K.; Mateju, K.; Obalová, L.; Krejcíková, S.; Lacny, Z.; Plachá, D.; Capek, L.; Hospodková, A.; Šolcová, O. Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2010, 96, 239–244.
Li, X. K.; Zhuang, Z. J.; Li, W.; Pan, H. Q. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl. Catal. A: Gen. 2012, 429–430, 31–38.
Liu, L. J.; Li, Y. Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: A review. Aerosol Air Qual. Res. 2014, 14, 453–469.
Meng, X. Q.; Ouyang, S. X.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. H. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem. Commun. 2014, 50, 11517–11519.
Kong, D.; Tan, J. Z. Y.; Yang, F.; Zeng, J. L.; Zhang, X. W. Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Appl. Surf. Sci. 2013, 277, 105–110.
Roy, S.; Hegde, M. S.; Ravishankar, N.; Madras, G. Creation of redox adsorption sites by Pd2+ ion substitution in nanoTiO2 for high photocatalytic activity of CO oxidation, NO reduction, and NO decomposition. J. Phys. Chem. C 2007, 111, 8153–8160.
Galian, R. E.; De la Guardia, M.; Pérez-Prieto, J. Size reduction of CdSe/ZnS core-shell quantum dots photosensitized by benzophenone: Where does the Cd(0) go? Langmuir 2011, 27, 1942–1945.
Trinh, T. T.; Mott, D.; Thanh, N. T. K.; Maenosono, S. One-pot synthesis and characterization of well defined core–shell structure of FePt@CdSe nanoparticles. RSC Adv. 2011, 1, 100–108.
Yasuo, I. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 2013, 257, 171–186.
Wu, M. -C.; Sápi, A.; Avila, A.; Szabó, M.; Hiltunen, J.; Huuhtanen, M.; Tóth, G.; Kukovecz, á.; Kónya, Z.; Keiski, R. et al. Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol–water mixtures. Nano Res. 2011, 4, 360–369.
Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860.
Ishitani, O.; Inoue, C.; Suzuki, Y.; Ibusuki, T. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J. Photochem. Photobiol. A: Chem. 1993, 72, 269–271.
Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 2014, 6, 320–324.
Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365–384.
Sorescu, D. C.; Al-Saidi, W. A.; Jordan, K. D. CO2 adsorption on TiO2(101) anatase: A dispersion-corrected density functional theory study. J. Chem. Phys. 2011, 135, 124701.
He, H. Y.; Zapol, P.; Curtiss, L. A. A theoretical study of CO2 anions on anatase (101) surface. J. Phys. Chem. C 2010, 114, 21474–21481.
Valdés, á.; Qu, Z. -W.; Kroes, G. -J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879.
Chen, H. H.; Park, H. Millis, A. J.; Marianetti, C. A. Charge transfer across transition-metal oxide interfaces: Emergent conductance and electronic structure. Phys. Rev. B 2014, 90, 245138.
Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.
Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 1999, 82, 3296–3299.
Monkhorst, H. J.; Pack, J. D. Special points for brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum espresso: A modular and opensource software project for quantum simulations of materials. J. Phys. : Condens. Mat. 2009, 21, 395502.
Howard, C. J.; Sabine, T. M.; Dickson, F. Structural and thermal parameters for rutile and anatase. Acta Cryst. B 1991, 47, 462–468.
Swope, R. J.; Smyth, J. R.; Larson, A. C. H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile. Amer. Mineral. 1995, 80, 448–453.
Landmann, M.; Rauls, E.; Schmidt, W. G. The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. : Condens. Mat. 2012, 24, 195503.