Journal Home > Volume 9 , Issue 7

Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing ~90 ppmg-1·h-1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway

Show Author's information Anjana Sarkar1( )Eduardo Gracia-Espino2Thomas Wågberg2Andrey Shchukarev1Melinda Mohl3Anne-Riikka Rautio3Olli Pitkänen3Tiva Sharifi2Krisztian Kordas3Jyri-Pekka Mikkola1,4( )
Technical Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, SE-901 87, UmeåSweden
Department of Physics, Umeå University, SE-901 87, UmeåSweden
Microelectronics and Materials Physics LaboratoriesDepartment of Electrical EngineeringUniversity of Oulu, P.O. Box 4500, Oulu, FI-90014Finland
Laboratory of Industrial Chemistry and Reaction EngineeringJohan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, Åbo-Turku, FI-20500Finland

Abstract

Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing ~90 ppmg-1·h-1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.

Keywords: photocatalysis, TiO2, CO2 photoreduction, CdSe quantum dots

References(66)

1

Metz, B.; Davidson, O.; De Coninck, H.; Loos, M.; Meyer, L. Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005.

2

European Parliament Legislative Resolution of 17 December 2008 on the Proposal for a Directive of the European Parliament and the Council on the Promotion of the Use of Energy from Renewable Source (COM(2008)0019-C6-0046/ 2008-2008/0016(COD)); European parliament: Strasbourg, France, 2008.

3

Yuan, L.; Xu, Y. -J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 154–167.

4

Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278.

5

Liu, G. H.; Hoivik, N.; Wang, K. Y.; Jakobsen, H. Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol. Energy Mater. Sol. Cells 2012, 105, 53–68.

6

Wang, C. J.; Thompson, R. L.; Baltrus, J.; Matranga, C. Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. J. Phys. Chem. Lett. 2010, 1, 48–53.

7

Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217–9233.

8

Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.

9

Kwak, B. S.; Kang, M. Photocatalytic reduction of CO2 with H2O using perovskite Ca x Ti y O3. Appl. Surf. Sci. 2015, 337, 138–144.

10

Li, X.; Wen, J. Q.; Low, J. X.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.

11

Ashley, M.; Magiera, C.; Ramidi, P.; Blackburn, G.; Scott, T. G.; Gupta, R.; Wilson, K.; Ghosh, A.; Biswas, A. Nanomaterials and processes for carbon capture and conversion into useful by-products for a sustainable energy future. Greenh. Gases: Sci. Technol. 2012, 2, 419–444.

12

Kumar, S. G.; Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241.

13

Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 24, 16–42.

14

Yu, J. G.; Low, J. X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.

15

Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal. Today 1998, 45, 221–227.

16

Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J. Electroanal. Chem. 1995, 396, 21–26.

17

Pathak, P.; Meziani, M. J.; Li, Y.; Cureton, L. T.; Sun, Y. P. Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chem. Commun. 2004, 1234–1235.

18

Tseng, I. H.; Chang, W. -C.; Wu, J. C. S. Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal. B: Environ. 2002, 37, 37–48.

19

Lo, C. C.; Hung, C. H.; Yuan, C. S.; Wu, J. F. Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol. Energy Mater. Sol. Cells 2007, 91, 1765–1774.

20

Dey, G. R.; Belapurkar, A. D.; Kishore, K. Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water. J. Photochem. Photobiol. A: Chem. 2004, 163, 503–508.

21

Guan, G. Q.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A. Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Appl. Catal. A: Gen. 2003, 249, 11–18.

22

Guan, G. Q.; Kida, T.; Yoshida, A. Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl. Catal. B: Environ. 2003, 41, 387–396.

23

Yahaya, A. H.; Gondal, M. A.; Hameed, A. Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem. Phys. Lett. 2004, 400, 206–212.

24

Chen, H. -C.; Chou, H. -C.; Wu, J. C. S.; Lin, H. -Y. Sol–gel prepared InTaO4 and its photocatalytic characteristics. J. Mater. Res. 2008, 23, 1364–1370.

25

Ozcan, O.; Yukruk, F.; Akkaya, E. U.; Uner, D. Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation. Appl. Catal. B: Environ. 2007, 71, 291–297.

26

Ozcan, O.; Yukruk, F.; Akkaya, E. U.; Uner, D. Dye sensitized CO2 reduction over pure and platinized TiO2. Top. Catal. 2007, 44, 523–528.

27

Nguyen, T. -V.; Wu, J. C. S.; Chiou, C. -H. Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal. Commun. 2008, 9, 2073–2076.

28

Pathak, P.; Meziani, M. J.; Castillo, L.; Sun, Y. P. Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem. 2005, 7, 667–670.

29

Sasirekha, N.; Basha, S. J. S; Shanthi, K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl. Catal. B: Environ. 2006, 62, 169–180.

30

Zhao, Z. H.; Fan, J. M.; Wang, Z. Z. Photocatalytic CO2 reduction using sol–gel derived titania-supported zincphthalocyanine. J. Clean. Prod. 2007, 15, 1894–1897.

31

Sarkar, A.; Shchukarev, A.; Leino, A. -R.; Kordas, K.; Mikkola, J. -P.; Petrov, P. O.; Tuchina, E. S.; Popov, A. P.; Darvin, M. E.; Meinke, M. C. et al. Photocatalytic activity of TiO2 nanoparticles: Effect of thermal annealing under various gaseous atmospheres. Nanotechnology 2012, 23, 475711.

32

Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide Co-catalysts with a core–shell structure. Angew. Chem., Int. Ed. 2013, 52, 5776–5779.

33

Liu, Y.; Zhou, S.; Li, J. M.; Wang, Y. J.; Jiang, G. Y.; Zhao, Z.; Liu, B.; Gong, X. Q.; Duan, A. J.; Liu, J. et al. Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Appl. Catal. B: Environ. 2015, 168–169, 125–131.

34

Li, Q. Y.; Zong, L. L.; Li, C.; Yang, J. J. Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl. Surf. Sci. 2014, 314, 458–463.

35

Long, M. C.; Cai, W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.; Wu, Y. H. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 2006, 110, 20211–20216.

36

Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786.

37

Yang, C. Y.; Wang, W. D.; Shan, Z. C.; Huang, F. Q. Preparation and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst SnSx/TiO2. J. Solid State Chem. 2009, 182, 807–812.

38

Robel, I.; Kuno, M.; Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137.

39

Zhang, Q. -H.; Han, W. -D.; Hong, Y. -J.; Yu, J. -G. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today 2009, 148, 335–340.

40

Koci, K.; Mateju, K.; Obalová, L.; Krejcíková, S.; Lacny, Z.; Plachá, D.; Capek, L.; Hospodková, A.; Šolcová, O. Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2010, 96, 239–244.

41

Li, X. K.; Zhuang, Z. J.; Li, W.; Pan, H. Q. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl. Catal. A: Gen. 2012, 429–430, 31–38.

42

Liu, L. J.; Li, Y. Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: A review. Aerosol Air Qual. Res. 2014, 14, 453–469.

43

Meng, X. Q.; Ouyang, S. X.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. H. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem. Commun. 2014, 50, 11517–11519.

44

Kong, D.; Tan, J. Z. Y.; Yang, F.; Zeng, J. L.; Zhang, X. W. Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Appl. Surf. Sci. 2013, 277, 105–110.

45

Roy, S.; Hegde, M. S.; Ravishankar, N.; Madras, G. Creation of redox adsorption sites by Pd2+ ion substitution in nanoTiO2 for high photocatalytic activity of CO oxidation, NO reduction, and NO decomposition. J. Phys. Chem. C 2007, 111, 8153–8160.

46

Galian, R. E.; De la Guardia, M.; Pérez-Prieto, J. Size reduction of CdSe/ZnS core-shell quantum dots photosensitized by benzophenone: Where does the Cd(0) go? Langmuir 2011, 27, 1942–1945.

47

Trinh, T. T.; Mott, D.; Thanh, N. T. K.; Maenosono, S. One-pot synthesis and characterization of well defined core–shell structure of FePt@CdSe nanoparticles. RSC Adv. 2011, 1, 100–108.

48

Yasuo, I. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 2013, 257, 171–186.

49

Wu, M. -C.; Sápi, A.; Avila, A.; Szabó, M.; Hiltunen, J.; Huuhtanen, M.; Tóth, G.; Kukovecz, á.; Kónya, Z.; Keiski, R. et al. Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol–water mixtures. Nano Res. 2011, 4, 360–369.

50

Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834–2860.

51

Ishitani, O.; Inoue, C.; Suzuki, Y.; Ibusuki, T. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J. Photochem. Photobiol. A: Chem. 1993, 72, 269–271.

52

Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 2014, 6, 320–324.

53

Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365–384.

54

Sorescu, D. C.; Al-Saidi, W. A.; Jordan, K. D. CO2 adsorption on TiO2(101) anatase: A dispersion-corrected density functional theory study. J. Chem. Phys. 2011, 135, 124701.

55

He, H. Y.; Zapol, P.; Curtiss, L. A. A theoretical study of CO2 anions on anatase (101) surface. J. Phys. Chem. C 2010, 114, 21474–21481.

56

Valdés, á.; Qu, Z. -W.; Kroes, G. -J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879.

57

Chen, H. H.; Park, H. Millis, A. J.; Marianetti, C. A. Charge transfer across transition-metal oxide interfaces: Emergent conductance and electronic structure. Phys. Rev. B 2014, 90, 245138.

58

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133.

59

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

60

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

61

Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 1999, 82, 3296–3299.

62

Monkhorst, H. J.; Pack, J. D. Special points for brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

63

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum espresso: A modular and opensource software project for quantum simulations of materials. J. Phys. : Condens. Mat. 2009, 21, 395502.

64

Howard, C. J.; Sabine, T. M.; Dickson, F. Structural and thermal parameters for rutile and anatase. Acta Cryst. B 1991, 47, 462–468.

65

Swope, R. J.; Smyth, J. R.; Larson, A. C. H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile. Amer. Mineral. 1995, 80, 448–453.

66

Landmann, M.; Rauls, E.; Schmidt, W. G. The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. : Condens. Mat. 2012, 24, 195503.

File
nr-9-7-1956_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 June 2015
Revised: 27 March 2016
Accepted: 01 April 2016
Published: 04 May 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The theoretical simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N). The Authors also acknowledge Kempe Foundations, the Bio4Enenrgy programme and the Artificial Leaf project under auspices of Knut & Alice Wallenberg Foundation for funding provided.

Return