Journal Home > Volume 9 , Issue 7

The single crystalline nanostructure of organic semiconductors provides a very promising class of materials for applications in modern optoelectronic devices. However, morphology control and optoelectronic property modulation of high quality single crystalline samples remain a challenge. Here, we report the morphology-controlled growth of single crystalline nanorod arrays of perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA). We demonstrate that, unlike PTCDA film, PTCDA nanorods exhibits optical waveguide features, enhanced absorption, and Frenkel excitation emission in the visible region. Additionally, we measured the electrical properties of PTCDA nanorods, including the conductivity along the growth direction of the nanorod, which is roughly 0.61 S·m–1 (much higher than that of pure crystalline PTCDA films).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Photophysical and electrical properties of organic waveguide nanorods of perylene-3, 4, 9, 10-tetracarboxylic dianhydride

Show Author's information Yuyan Han1,3Wei Ning1,3Liang Cao1,3Xiaotao Xu1Tian Li1Fapei Zhang1,3Li Pi1,3Faqiang Xu2( )Mingliang Tian1,3,4( )
High Magnetic Field LaboratoryChinese Academy of SciencesHefei230031China
National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China42 Hezuohua RoadHefei230029China
Hefei Science CenterChinese Academy of SciencesHefei230031China
Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China

Abstract

The single crystalline nanostructure of organic semiconductors provides a very promising class of materials for applications in modern optoelectronic devices. However, morphology control and optoelectronic property modulation of high quality single crystalline samples remain a challenge. Here, we report the morphology-controlled growth of single crystalline nanorod arrays of perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA). We demonstrate that, unlike PTCDA film, PTCDA nanorods exhibits optical waveguide features, enhanced absorption, and Frenkel excitation emission in the visible region. Additionally, we measured the electrical properties of PTCDA nanorods, including the conductivity along the growth direction of the nanorod, which is roughly 0.61 S·m–1 (much higher than that of pure crystalline PTCDA films).

Keywords: electrical conductivity, photoluminescence, organic semiconductor, single crystalline nanorod, optical waveguide

References(32)

1

Zhao, Y. S.; Fu, H. B.; Hu, F. Q.; Peng, A. D.; Yang, W. S.; Yao, J. N. Tunable emission from binary organic onedimensional nanomaterials: An alternative approach to white-light emission. Adv. Mater. 2008, 20, 79–83.

2

Peng, A. D.; Xiao, D. B.; Ma, Y.; Yang, W. S.; Yao, J. N. Tunable emission from doped 1, 3, 5-triphenyl-2-pyrazoline organic nanoparticles. Adv. Mater. 2005, 17, 2070–2073.

3

Lim, S. -J.; An, B. -K.; Jung, S. D.; Chung, M. -A.; Park, S. Y. Photoswitchable organic nanoparticles and a polymer film employing multifunctional molecules with enhanced fluorescence emission and bistable photochromism. Angew. Chem., Int. Ed. 2004, 43, 6346–6350.

4

Briseno, A. L.; Mannsfeld, S. C. B.; Lu, X. M.; Xiong, Y. J.; Jenekhe, S. A.; Bao, Z. N.; Xia, Y. N. Fabrication of fieldeffect transistors from hexathiapentacene single-crystal nanowires. Nano Lett. 2007, 7, 668–675.

5

Kim, S.; Kwon, H. -J.; Lee, S.; Shim, H.; Chun, Y.; Choi, W.; Kwack, J.; Han, D.; Song, M.; Kim, S. et al. Low-power flexible organic light-emitting diode display device. Adv. Mater. 2011, 23, 3511–3516.

6

Min, S. -Y.; Kim, T. -S.; Lee, Y.; Cho, H.; Xu, W. T.; Lee, T. -W. Organic nanowire fabrication and device applications. Small 2015, 11, 45–62.

7

Zhao, Y. S.; Fu, H. B.; Peng, A. D.; Ma, Y.; Xiao, D. B.; Yao, J. N. Low-dimensional nanomaterials based on small organic molecules: Preparation and optoelectronic properties. Adv. Mater. 2008, 20, 2859–2876.

8

Nikolaenko, A. E.; Cass, M.; Bourcet, F.; Mohamad, D.; Roberts, M. Thermally activated delayed fluorescence in polymers: A new route toward highly efficient solution processable OLEDs. Adv. Mater. 2015, 27, 7236–7240.

9

Vasilopoulou, M.; Douvas, A. M.; Georgiadou, D. G.; Constantoudis, V.; Davazoglou, D.; Kennou, S.; Palilis, L. C.; Daphnomili, D.; Coutsolelos, A. G.; Argitis, P. Large work function shift of organic semiconductors inducing enhanced interfacial electron transfer in organic optoelectronics enabled by porphyrin aggregated nanostructures. Nano Res. 2014, 7, 679–693.

10

Choi, K.; Nam, S.; Lee, Y.; Lee, M.; Jang, J.; Kim, S. J.; Jeong, Y. J.; Kim, H.; Bae, S.; Yoo, J. -B. et al. Reduced water vapor transmission rate of graphene gas barrier films for flexible organic field-effect transistors. ACS Nano 2015, 9, 5818–5824.

11

Triet, N. M.; Trung, T. Q.; Hien, N. T. D.; Siddiqui, S.; Kim, D. -I.; Lee, J. C.; Lee, N. -E. A flexible magnetoelectric fieldeffect transistor with magnetically responsive nanohybrid gate dielectric layer. Nano Res. 2015, 8, 3421–3429.

12

Homyak, P.; Liu, Y.; Liu, F.; Russel, T. P.; Coughlin, E. B. Systematic variation of fluorinated diketopyrrolopyrrole low bandgap conjugated polymers: Synthesis by direct arylation polymerization and characterization and performance in organic photovoltaics and organic field-effect transistors. Macromolecules 2015, 48, 6978–6986.

13

Heutz, S.; Ferguson, A. J.; Rumbles, G.; Jones, T. S. Morphology, structure and photophysics of thin films of perylene-3, 4, 9, 10-tetracarboxylic dianhydride. Org. Electron. 2002, 3, 119–127.

14

Ferguson, A. J.; Jones, T. S. Photophysics of PTCDA and Me-PTCDI thin films: Effects of growth temperature. J. Phys. Chem. B 2006, 110, 6891–6898.

15

Lovinger, A. J.; Forrest, S. R.; Kaplan, M. L.; Schmidt, P. H.; Venkatesan, T. Structural and morphological investigation of the development of electrical conductivity in ion-irradiated thin films of an organic material. J. Appl. Phys. 1984, 55, 476–482.

16

Zang, D. Y.; So, F. F.; Forrest, S. R. Giant anisotropies in the dielectric properties of quasi-epitaxial crystalline organic semiconductor thin films. Appl. Phys. Lett. 1991, 59, 823–825.

17

Zhao, Y. S.; Di, C.; Yang, W.; Yu, G.; Liu, Y.; Yao, J. Photoluminescence and electroluminescence from tris(8-hydroxyquinoline)aluminum nanowires prepared by adsorbent-assisted physical vapor deposition. Adv. Funct. Mater. 2006, 16, 1985–1991.

18

Han, Y. Y.; Ning, W.; Du, H. F.; Yang, J. Y.; Wang, N.; Cao, L.; Li, F.; Zhang, F. P.; Xu, F. Q.; Tian, M. L. Preparation, optical and electrical properties of PTCDA nanostructures. Nanoscale 2015, 7, 17116–17121.

19

Cao, L.; Wang, Y. -Z.; Zhong, J. -Q.; Han, Y. -Y.; Zhang, W. -H.; Yu, X. -J.; Xu, F. -Q.; Qi, D. -C.; Wee, A. T. S. Molecular orientation and site dependent charge transfer dynamics at PTCDA/TiO2(110) interface revealed by resonant photoemission spectroscopy. J. Phys. Chem. C 2014, 118, 4160–4166.

20

Cao, L.; Wang, Y. Z.; Zhong, J. Q.; Han, Y. Y.; Zhang, W. H.; Yu, X. J.; Xu, F. Q.; Qi, D. -C.; Wee, A. T. S. Electronic structure, chemical interactions and molecular orientations of 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride on TiO2(110). J. Phys. Chem. C 2011, 115, 24880–24887.

21

Chkoda, L.; Heske, C.; Sokolowski, M.; Umbach, E. Improved band alignment for hole injection by an interfacial layer in organic light emitting devices. Appl. Phys. Lett. 2000, 77, 1093–1095.

22

Chu, X. B.; Guan, M.; Li, L. S.; Zhang, Y.; Zhang, F.; Li, Y. Y.; Zhu, Z. P.; Wang, B. Q.; Zeng, Y. P. Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization. ACS Appl. Mater. Interfaces 2012, 4, 4976–4980.

23

Zhao, Y. S.; Zhan, P.; Kim, J.; Sun, C.; Huang, J. X. Patterned growth of vertically aligned organic nanowire waveguide arrays. ACS Nano 2010, 4, 1630–1636.

24

Takazawa, K.; Kitahama, Y.; Kimura, Y.; Kido, G. Optical waveguide self-assembled from organic dye molecules in solution. Nano Lett. 2005, 5, 1293–1296.

25

Hoffmann, M.; Schmidt, K.; Fritz, T.; Hasche, T.; Agranovich, V. M.; Leo, K. The lowest energy Frenkel and charge-transfer excitons in quasi-one-dimensional structures: Application to MePTCDI and PTCDA crystals. Chem. Phys. 2000, 258, 73–96.

26

Wagner, H. P.; DeSilva, A.; Kampen, T. U. Exciton emission in PTCDA films and PTCDA/Alq3 multilayers. Phys. Rev. B 2004, 70, 235201.

27

Gangilenka, V. R.; Titova, L. V.; Smith, L. M.; Wagner, H. P.; DeSilva, L. A. A.; Gisslén, L.; Scholz, R. Selective excitation of exciton transitions in PTCDA crystals and films. Phys. Rev. B 2010, 81, 155208.

28

Du, Y.; Cai, W. L.; Mo, C. M.; Chen, J.; Zhang, L. D.; Zhu, X. G. Preparation and photoluminescence of alumina membranes with ordered pore arrays. Appl. Phys. Lett. 1999, 74, 2951–2953.

29

Sun, X. Y.; Xu, F. Q.; Li, Z. M.; Zhang, W. H. Photoluminescence properties of anodic alumina membranes with ordered nanopore arrays. J. Lumines. 2006, 121, 588–594.

30

Schlettwein, D.; Back, A.; Schilling, B.; Fritz, T.; Armstrong, N. R. Ultrathin films of perylenedianhydride and perylenebis(dicarboximide) dyes on (001) alkali halide surfaces. Chem. Mater. 1998, 10, 601–612.

31

Schmidt, R.; Oh, J. H.; Sun, Y. -S.; Deppisch, M.; Krause, A. -M.; Radacki, K.; Braunschweig, H.; Könemann, M.; Erk, P.; Bao, Z. et al. High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors. J. Am. Chem. Soc 2009, 131, 6215–6228.

32

Forrest, S. R.; Kaplan, M. L.; Schmidt, P. H.; Venkatesan, T.; Lovinger, A. J. Large conductivity changes in ion beam irradiated organic thin films. Appl. Phys. Lett. 1982, 41, 708–710.

File
nr-9-7-1948_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 December 2015
Revised: 22 March 2016
Accepted: 25 March 2016
Published: 28 April 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgment

The authors thank Professor Lei Zhang for kind help in X-ray diffraction measurement, Mr. Fadi Li for assitance with the PL measurement, and Chiming Jin, Yan Liu and Wenshuai Gao for assitance with the device fabrication by FIB techniques. This work was supported by the National Natural Science Foundation of China (Nos. 11174294, 11374302, U1432251, 11574320, U1332139, 11575187 and 11574317), and the program of Users with Excellence, the Hefei Science Center of CAS and the CAS/SAFEA international partnership program for creative research teams of China.

Return