Journal Home > Volume 9 , Issue 7

In this paper, we describe the facile and effective preparation of a series of cobalt-doped Fe3O4 nanocatalysts via chemical coprecipitation in an aqueous solution. The catalyst allowed the hydrogenation of chloronitrobenzenes to chloroanilines (CAs) to proceed at low temperatures in absolute water and at atmospheric pressure, resulting in approximately 100% yield and selectivity. Several factors that influence the yield of CAs were investigated. The results showed that the suitable dosage of the catalyst was ~10 mol.% of the substrate, and the optimal reaction time, reaction temperature, and reaction pressure were 20 min, 80 ℃, and atmospheric pressure, respectively. Under the optimal reaction conditions, the CA yield was as high as 98.4%, and the nitro reduction rate reached 100%, which indicates the excellent selectivity of the homemade catalyst. This process also overcomes the environmental pollution harms associated with the traditional process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes

Show Author's information Bing Yang§Qikun Zhang§Xiaoye MaJunqing KangJingmin ShiBo Tang( )
College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical ImagingKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Normal UniversityJinan250014China

§These authors contributed equally to this work.

Abstract

In this paper, we describe the facile and effective preparation of a series of cobalt-doped Fe3O4 nanocatalysts via chemical coprecipitation in an aqueous solution. The catalyst allowed the hydrogenation of chloronitrobenzenes to chloroanilines (CAs) to proceed at low temperatures in absolute water and at atmospheric pressure, resulting in approximately 100% yield and selectivity. Several factors that influence the yield of CAs were investigated. The results showed that the suitable dosage of the catalyst was ~10 mol.% of the substrate, and the optimal reaction time, reaction temperature, and reaction pressure were 20 min, 80 ℃, and atmospheric pressure, respectively. Under the optimal reaction conditions, the CA yield was as high as 98.4%, and the nitro reduction rate reached 100%, which indicates the excellent selectivity of the homemade catalyst. This process also overcomes the environmental pollution harms associated with the traditional process.

Keywords: catalysis, nanoparticles, doping, hydrogenation, spinel phases

References(50)

1

Tafesh, A. M.; Weiguny, J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev. 1996, 96, 2035–2052.

2

Shi, Q. X.; Lu, R. W.; Lu, L. H.; Fu, X. M.; Zhao, D. F. Efficient reduction of nitroarenes over nickel-iron mixed oxide catalyst prepared from a nickel-iron hydrotalcite precursor. Adv. Synth. Catal. 2007, 349, 1877–1881.

3

Han, X. X.; Zhou, R. X.; Lai, G. H.; Yue, B. H.; Zheng, X. M. Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts. J. Mol. Catal. A: Chem. 2004, 209, 83–87.

4

Lin, M. H.; Zhao, B.; Chen, Y. W. Hydrogenation of p-chloronitrobenzene over Mo-modified NiCoB nanoalloy catalysts: Effect of Mo content. Ind. Eng. Chem. Res. 2009, 48, 7037–7043.

5

Su, J. F.; Zhao, B.; Chen, Y. W. Hydrogenation of pchloronitrobenzene on Mo-doped NiB cluster catalysts. Ind. Eng. Chem. Res. 2011, 50, 1580–1587.

6

Hazlet, S. E.; Dornfeld, C. A. The reduction of aromatic nitro compounds with activated iron. J. Am. Chem. Soc. 1944, 66, 1781–1782.

7

Liu, Y. G.; Lu, Y. S.; Prashad, M.; Repic, O.; Blacklock, T. J. A practical and chemoselective reduction of nitroarenes to anilines using activated iron. Adv. Synth. Catal. 2005, 347, 217–219.

8

Noel, M.; Anantharaman, P. N.; Udupa, H. V. K. An electrochemical technique for the reduction of aromatic nitro compounds. J. Appl. Electrochem. 1982, 12, 291–298.

9

Stutts, K. J.; Scortichini, C. L.; Repucci, C. M. Electrochemical reduction of nitroaromatics to anilines in basic media: Effects of positional isomerism and cathode composition. J. Org. Chem. 1989, 54, 3740–3744.

10

Maity, S. K.; Pradhan, N. C.; Patwardhan, A. V. Kinetics of phase transfer catalyzed reduction of nitrochlorobenzenes by aqueous ammonium sulfide: Utilization of hydrotreater off-gas for the production of value-added chemicals. Appl. Catal. B: Environ. 2008, 77, 418–426.

11

Cann, K.; Cole, T.; Slegeir, W.; Pettit, R. Catalytic reductions using carbon monoxide and water in place of hydrogen. 2. Reduction of aromatic nitro compounds to amines. J. Am. Chem. Soc. 1978, 100, 3969–3971.

12

Gao, G.; Tao, Y.; Jiang, J. Y. Environmentally benign and selective reduction of nitroarenes with Fe in pressurized CO2–H2O medium. Green Chem. 2008, 10, 439–441.

13

Meng, X. C.; Cheng, H. Y.; Fujita, S. I.; Yu, Y. C.; Zhao, F. Y.; Arai, M. An effective medium of H2O and low-pressure CO2 for the selective hydrogenation of aromatic nitro compounds to anilines. Green Chem. 2011, 13, 570–572.

14

Surolia, P. K.; Tayade, R. J.; Jasra, R. V. Photocatalytic degradation of nitrobenzene in an aqueous system by transition-metal-exchanged ETS-10 zeolites. Ind. Eng. Chem. Res. 2010, 49, 3961–3966.

15

Roy, P.; Periasamy, A. P.; Liang, C. T.; Chang, H. T. Synthesis of graphene-ZnO-Au nanocomposites for efficient photocatalytic reduction of nitrobenzene. Environ. Sci. Technol. 2013, 47, 6688–6695.

16

Shi, Q. X.; Lu, R. W.; Jin, K.; Zhang, Z. X.; Zhao, D. F. Simple and eco-friendly reduction of nitroarenes to the corresponding aromatic amines using polymer-supported hydrazine hydrate over iron oxide hydroxide catalyst. Green Chem. 2006, 8, 868–870.

17

Kim, S.; Kim, E.; Kim, B. M. Fe3O4 nanoparticles: A conveniently reusable catalyst for the reduction of nitroarenes using hydrazine hydrate. Chem. —Asian J. 2011, 6, 1921–1925.

18

Jagadeesh, R. V.; Wienhöfer, G.; Westerhaus, F. A.; Surkus, A. E.; Pohl, M. M.; Junge, H.; Junge, K.; Beller, M. Efficient and highly selective iron-catalyzed reduction of nitroarenes. Chem. Commun. 2011, 47, 10972–10974.

19

Sharma, U.; Verma, P. K.; Kumar, N.; Kumar, V.; Bala, M.; Singh, B. Phosphane-free green protocol for selective nitro reduction with an iron-based catalyst. Chem. —Eur. J. 2011, 17, 5903–5907.

20

Luo, P. F.; Xu, K. L.; Zhang, R.; Huang, L.; Wang, J.; Xing, W. H.; Huang, J. Highly efficient and selective reduction of nitroarenes with hydrazine over supported rhodium nanoparticles. Catal. Sci. Technol. 2012, 2, 301–304.

21

Cantillo, D.; Moghaddam, M. M.; Kappe, C. O. Hydrazinemediated reduction of nitro and azide functionalities catalyzed by highly active and reusable magnetic iron oxide nanocrystals. J. Org. Chem. 2013, 78, 4530–4542.

22

Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

23

Rai, R. K.; Mahata, A.; Mukhopadhyay, S.; Gupta, S.; Li, P. Z.; Nguyen, K. T.; Zhao, Y. L.; Pathak, B.; Singh, S. K. Room-temperature chemoselective reduction of nitro groups using non-noble metal nanocatalysts in water. Inorg. Chem. 2014, 53, 2904–2909.

24

Du, W. C.; Xia, S. X.; Nie, R. F.; Hou, Z. Y. Magnetic Pt catalyst for selective hydrogenation of halonitrobenzenes. Ind. Eng. Chem. Res. 2014, 53, 4589–4594.

25

Mohapatra, S. K.; Sonavane, S. U.; Jayaram, R. V.; Selvam, P. Reductive cleavage of azo dyes and reduction of nitroarenes over trivalent iron incorporated hexagonal mesoporous aluminophosphate molecular sieves. Appl. Catal. B: Environ. 2003, 46, 155–163.

26

Li, B. J.; Xu, Z. A nonmetal catalyst for molecular hydrogen activation with comparable catalytic hydrogenation capability to noble metal catalyst. J. Am. Chem. Soc. 2009, 131, 16380–16382.

27

Sorribes, I.; Wienhöfer, G.; Vicent, C.; Junge, K.; Llusar, R.; Beller, M. Chemoselective transfer hydrogenation to nitroarenes mediated by cubane-type Mo3S4 cluster catalysts. Angew. Chem. 2012, 124, 7914–7918.

28

Wu, B. H.; Huang, H. Q.; Yang, J.; Zheng, N. F.; Fu, G. Selective hydrogenation of α, β-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angew. Chem., Int. Ed. 2012, 51, 3440–3443.

29

He, D. P.; Jiao, X. D.; Jiang, P.; Wang J.; Xu, B. Q. An exceptionally active and selective Pt–Au/TiO2 catalyst for hydrogenation of the nitro group in chloronitrobenzene. Green Chem. 2012, 14, 111–116.

30

Chatterjee, M.; Ishizaka, T.; Suzuki, T.; Suzuki, A.; Kawanami, H. In situ synthesized Pd nanoparticles supported on BMCM-41: An efficient catalyst for hydrogenation of nitroaromatics in supercritical carbon dioxide. Green Chem. 2012, 14, 3415–3422.

31

Lee, D. S.; Chen, Y. W. Hydrogenation of p-chloronitrobenzene on La-doped NiMoB nanocluster catalysts. Chin. J. Catal. 2013, 34, 2018–2028.

32

Mitsudomea, T.; Kaneda, K. Gold nanoparticle catalysts for selective hydrogenations. Green Chem. 2013, 15, 2636–2654.

33

Cárdenas-Lizana, F.; Hao, Y. F.; Crespo-Quesada, M.; Yuranov, I.; Wang, X. D.; Keane, M. A.; Kiwi-Minsker, L. Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts: Role of the support. ACS Catal. 2013, 3, 1386–1396.

34

Wang, X. D.; Cárdenas-Lizana, F.; Keane, M. A. Toward sustainable chemoselective nitroarene hydrogenation using supported gold as catalyst. ACS Sustainable Chem. Eng. 2014, 2, 2781–2789.

35

Lu, T.; Wei, H. S.; Yang, X. F.; Li, J.; Wang, X. D.; Zhang, T. Microemulsion-controlled synthesis of one-dimensional Ir nanowires and their catalytic activity in selective hydrogenation of o-chloronitrobenzene. Langmuir 2015, 31, 90–95.

36

Vilé, G.; Almora-Barrios, N.; López, N.; Pérez-Ramírez, J. Structure and reactivity of supported hybrid platinum nanoparticles for the flow hydrogenation of functionalized nitroaromatics. ACS Catal. 2015, 5, 3767–3778.

37

Zhang, P. P.; Hu, Y. B.; Li, B. H.; Zhang, Q. J.; Zhou, C.; Yu, H. B.; Zhang, X. J.; Chen, L.; Eichhorn, B.; Zhou, S. H. Kinetically stabilized Pd@Pt core–shell octahedral nanoparticles with thin Pt layers for enhanced catalytic hydrogenation performance. ACS Catal. 2015, 5, 1335–1343.

38

Shukla, A.; Singha, R. K.; Sasaki, T.; Bal, R. Nanocrystalline Pt-CeO2 as an efficient catalyst for a room temperature selective reduction of nitroarenes. Green Chem. 2015, 17, 785–790.

39

Nandanwar, S. U.; Chakraborty, M. Synthesis of colloidal CuO/γ-Al2O3 by microemulsion and its catalytic reduction of aromatic nitro compounds. Chin. J. Catal. 2012, 33, 1532–1541.

40

Pal, J.; Mondal, C.; Sasmal, A. K.; Ganguly, M.; Negishi, Y.; Pal, T. Account of nitroarene reduction with size- and facet-controlled CuO–MnO2 nanocomposites. ACS Appl. Mater. Interfaces 2014, 6, 9173–9184.

41

Fountoulaki, S.; Daikopoulou, V.; Gkizis, P. L.; Tamiolakis, I.; Armatas, G. S.; Lykakis, I. N. Mechanistic studies of the reduction of nitroarenes by NaBH4 or hydrosilanes catalyzed by supported gold nanoparticles. ACS Catal. 2014, 4, 3504–3511.

42

Ahn, T.; Kim, J. H.; Yang, H. M.; Lee, J. W.; Kim, J. D. Formation pathways of magnetite nanoparticles by coprecipitation method. J. Phys. Chem. C 2012, 116, 6069–6076.

43

Han, R.; Ha, J. W.; Xiao, C. X.; Pei, Y. C.; Qi, Z. Y.; Dong, B.; Bormann, N. L.; Huang, W. Y.; Fang, N. Geometry-assisted three-dimensional superlocalization imaging of singlemolecule catalysis on modular multilayer nanocatalysts. Angew. Chem., Int. Ed. 2014, 53, 12865–12869.

44

Xu, Z. H.; Gu, S. L.; Huang, S. M.; Tang, K.; Ye, J. D.; Zhu, S. M.; Xu, M. X.; Zheng, Y. D. Structure and properties of Fe3O4 films grown on ZnO template via metal organic chemical vapor deposition. J. Magn. Magn. Mater. 2015, 385, 257–264.

45

Bhargava, G.; Gouzman, I.; Chun, C. M.; Ramanarayanan, T. A.; Bernasek, S. L. Characterization of the "native" surface thin film on pure polycrystalline iron: A high resolution XPS and TEM study. Appl. Surf. Sci. 2007, 253, 4322–4329.

46

Grasset, F.; Labhsetwar, N.; Li, D.; Park, D. C.; Saito, N.; Haneda, H.; Cador, O.; Roisnel, T.; Mornet, S.; Duguet, E. et al. Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: Powder, colloidal solution, and zinc ferrite-silica core-shell nanoparticles. Langmuir 2002, 18, 8209–8216.

47

Shinagawa, T.; Izaki, M.; Inui, H.; Murase, K.; Awakura, Y. Microstructure and electronic structure of transparent ferromagnetic ZnO-spinel iron oxide composite films. Chem. Mater. 2006, 18, 763–770.

48

Liu, J.; Bin, Y. Z.; Matsuo, M. Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size. J. Phys. Chem. C. 2012, 116, 134–143.

49

Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.

50

Cheng, F. Y; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.

File
nr-9-7-1879_ESM.pdf (1,013.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 December 2015
Revised: 25 February 2016
Accepted: 21 March 2016
Published: 24 May 2016
Issue date: July 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CB933800), the National Natural Science Foundation of China (Nos. 21535004, 21227005, and 21390411), and Shandong Provincial Natural Science Foundation of China (No. ZR2013EMM004).

Return